Math, asked by wwwghousebegamhannan, 9 months ago

2x square +x+4 by completing the square method

Answers

Answered by Anonymous
9

\large{\underline{\bf{\green{Given:-}}}}

✰ p(x) = 2x² +x +4 = 0

\large{\underline{\bf{\green{To\:Find:-}}}}

✰ we need to find the roots of the given polynomial.

\huge{\underline{\bf{\red{Solution:-}}}}

: \implies   \sf\:2x^2+x+4=0\\\\

: \implies   \sf\:2x^2+x=-4\\\\

  \sf\: Divide\:both\:side\:by\:2\\\\

: \implies   \sf\:\frac{2x^2+x}{2}=\frac{-4}{2}\\\\

: \implies   \sf\:x^2+\frac{x}{2}=-2\\\\

   \sf\:Add\:(\frac{1}{4})^2\:on\:both\:sides\\\\

: \implies   \sf\:x^2+\frac{x}{2}+\frac{1}{16}=-2+\frac{1}{16}\\\\

: \implies   \sf\:(x+\frac{1}{4})^2=\frac{-32+1}{16}\\\\

: \implies   \sf\:(x+\frac{1}{4})^2=\frac{-31}{16}\\\\

: \implies   \sf\:x+\frac{1}{4}= \sqrt{ \frac{ - 31}{16} }\\ \\

: \implies   \sf\:x+\frac{1}{4}= \frac{ \sqrt{31} }{4} \\\\

: \implies   \bf{\purple{\:x =  \frac{ \sqrt{31} - 1 }{4}}} \\\\

: \implies   \bf{\purple{\:x =  \frac{  -  \sqrt{31}  - 1}{4}}}\\\\

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by silentlover45
1

Answer:

\implies x = (-√-31 - 1)/4

\large\underline\mathrm{Given:-}

  • P(x) = 2x² + x + 4 = 0

\large\underline\mathrm{To \: find}

  • We need to find the roots of the given polynomial.

\large\underline\mathrm{Solution}

\implies 2x² + x + 4 = 0

\implies 2x + x = -4

  • Divide both side by 2.

\implies (2x² + x)/2 = -4/2

\implies x² + x/2 = -2

  • Adding the (1/4)² on both sides.

\implies x² + x/2 + 1/16 = -2 + 1/16

\implies (x + 1/4)² = -31/16

\implies x + x/4 = √-31/16

\implies x + x/4 = √-31/4

\implies x = (√-31 - 1)/4

\implies x = (-√-31 - 1)/4

Similar questions