Math, asked by yadav4573, 4 months ago

2x* -x+ 1/8=0
Find the root of following Quadratic equation by
Factorisation

Answers

Answered by MaheswariS
2

\textbf{Given:}

\mathsf{Equation\;is\;2x^2-x+\dfrac{1}{8}=0}

\textbf{To find:}

\textsf{Roots of the given quadratic equation}

\textbf{Solution:}

\textbf{Factorisation:}

\boxed{\begin{minipage}{8cm}$\\\textsf{The method of writing a polynomial into product}\\\\\textsf{of its factors is called Facorisation.}\\$\end{minipage}}

\mathsf{Consider,}

\mathsf{2x^2-x+\dfrac{1}{8}=0}

\mathsf{2x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{8}=0}

\mathsf{2x\left(x-\dfrac{1}{4}\right)-\dfrac{1}{2}\left(x-\dfrac{1}{4}\right)=0}

\mathsf{\left(2x-\dfrac{1}{2}\right)\left(x-\dfrac{1}{4}\right)=0}

\implies\mathsf{2x-\dfrac{1}{2}=0\;\;or\;\;x-\dfrac{1}{4}=0}

\implies\mathsf{2x=\dfrac{1}{2}\;\;or\;\;x=\dfrac{1}{4}}

\implies\mathsf{x=\dfrac{1}{4}\;\;or\;\;x=\dfrac{1}{4}}

\implies\boxed{\mathsf{x=\dfrac{1}{4},\dfrac{1}{4}}}

\textbf{Answer:}

\mathsf{Roots\;are\;\dfrac{1}{4},\;\dfrac{1}{4}}

\textbf{Find more:}

Find the roots by factorisation: x^2-2√3x-9=0

https://brainly.in/question/4927154

Factorise : root 5x square + 2x - 3root 5

https://brainly.in/question/648016

Similar questions