Math, asked by sumita78debnath, 1 month ago

2x/(x²-4) + 1/(x²+3x+2)
solve this with steps​

Attachments:

Answers

Answered by Anonymous
3

To solve :-

 \tt \implies \dfrac{2x}{ {x}^{2} - 4 } +  \dfrac{1}{ {x}^{2} + 3x + 2 }

Solution :-

 \tt \implies \dfrac{2x}{ {x}^{2} - 4 } +  \dfrac{1}{ {x}^{2} + 3x + 2 }

 \tt \implies \dfrac{2x}{ {x}^{2} -  {2}^{2}  } +  \dfrac{1}{ {x}^{2} + 3x + 2 }

Factorise denominator of 2nd term

 \tt \implies \dfrac{2x}{ {x}^{2} -  {2}^{2}  } +  \dfrac{1}{ {x}^{2} + 2x + x + 2 }

 \tt \implies \dfrac{2x}{ {x}^{2} -  {2}^{2}  } +  \dfrac{1}{ x(x + 2)+ 1(  x + 2) }

 \tt \implies \dfrac{2x}{ {x}^{2} -  {2}^{2}  } +  \dfrac{1}{ (x + 2)(  x + 1) }

Apply formula (a²-b²) = (a+b)(a-b) in denominator of first term where a = x and b =2

 \tt \implies \dfrac{2x}{(x + 2)(x - 2) } +  \dfrac{1}{ (x + 2)(  x + 1) }

Now take LCM

 \tt \implies \dfrac{2x(x + 1) + 1(x - 2)}{(x + 2)(x - 2)(  x + 1)  }

 \tt \implies \dfrac{2 {x}^{2} +  2x+ x - 2}{(x + 2)(x - 2)(  x + 1)  }

 \tt \implies \dfrac{2 {x}^{2} +  3 x - 2}{(x + 2)(x - 2)(  x + 1)  }

Now factorise numerator

 \tt \implies \dfrac{2 {x}^{2} +  4x - x - 2}{(x + 2)(x - 2)(  x + 1)  }

 \tt \implies \dfrac{2 x(x +  2) - 1(x  + 2)}{(x + 2)(x - 2)(  x + 1)  }

 \tt \implies \dfrac{(2x - 1)(x  + 2)}{(x + 2)(x - 2)(  x + 1)  }

Cancel out like terms from numerator and denominator

 \tt \implies \dfrac{(2x - 1) \cancel{(x  + 2)}}{ \cancel{(x + 2)}(x - 2)(  x + 1)  }

 \tt \implies \dfrac{(2x - 1)}{ (x - 2)(  x + 1)  }

 \tt \implies \dfrac{(2x - 1)}{ x (  x + 1) - 2(x + 1)  }

 \tt \implies \dfrac{(2x - 1)}{  {x}^{2}  + x - 2x  - 2  }

 \tt \implies \dfrac{2x - 1}{  {x}^{2}   - x  - 2  }

Since this can't be solved further, it's your final answer.

Similar questions