Math, asked by kary6626, 11 months ago

2x-y=11 and 5x+4y=1 by elimination method

Answers

Answered by baghelsonali92
3

ANS :- y= 53 /13 ,x = 44 /5

HOPEFULLY HELP YOU.........

Attachments:
Answered by silentlover45
9

\large\underline{Given:-}

  • \: \: \: \: \: {2x} \: - \: {y} \: \: = \: \: {11}
  • \: \: \: \: \: {5x} \: + \: {4y} \: \: = \: \: {1}

\large\underline{To find:-}

  • find the value of x and y.

\large\underline{Solutions:-}

  • \: \: \: \: \: {2x} \: - \: {y} \: \: = \: \: {11} \: \: \: \: \: .....{(i)}.
  • \: \: \: \: \: {5x} \: + \: {4y} \: \: = \: \: {1} \: \: \: \: \: .....{(ii)}.

»★ multiplying Eq. (i) by 5 and Eq. (ii) by 2 , we get.

  • \: \: \: \: \: {10x} \: - \: {5y} \: \: = \: \: {55} \: \: \: \: \: .....{(iii)}.
  • \: \: \: \: \: {10x} \: + \: {8y} \: \: = \: \: {2} \: \: \: \: \: .....{(iv)}.

»★ Subtracting Eq. (iii) from Eq. (iv).

 {10x} \: - \: {5y} \: \: = \: \: {55} \\ {10x} \: + \: {8y} \: \: = \: \: {2} \\ \underline{- \: \: \: \: \: \: \: - \: \: \: \: \: \: \: \: \: = \: \: - \: \: \: \: \: \: \: \: \: \: } \\ \: \: \: \: \: \: \: \: \: \: \: {-13y} \: \: \: = \: \: \: {53}

\: \: \: \: \: \leadsto \: \: {y} \: \: = \: \: \frac{-53}{13}

»★ Now, putting the value y in Eq. (1)

\: \: \: \: \: \leadsto \: \: {2x} \: - \: {y} \: \: = \: \: {11}

\: \: \: \: \: \leadsto \: \: {2x} \: - \: {(\frac{-53}{13})} \: \: = \: \: {11}

\: \: \: \: \: \leadsto \: \: {2x} \: \: = \: \: {11} \: - \:  \frac{53}{13}

\: \: \: \: \: \leadsto \: \: {2x} \: \: = \: \: \frac{{143} \: - \: {53}}{13}

\: \: \: \: \: \leadsto \: \: {2x} \: \: = \: \: \frac{90}{13}

\: \: \: \: \: \leadsto \: \: {x} \: \: = \: \: \frac{45}{13}

»★ Hence,

\: \: \: \: \: The \: \: value \: \: of \: \: x \: \: and \: \: y \: \: is  \: \: \frac{45}{13} \: \: and \: \: \frac{-53}{13}.

__________________________

Similar questions