(2x-y)³-(x+y)³+(2y-x)³
Answers
Answer:
(2x+y)
3
+(2x−y)
3
⇒ [(2x)
2
]
3
−[(y)
2
]
3
[ Since, (a+b)(a−b)=a
2
−b
2
]
⇒ [4x
2
]
3
−[y
2
]
3
⇒ 64x
6
−y
6
∴ (2x+y)
3
+(2x−y)
3
=64x
6
−y
6
plz mark my answer in brainliest plz
(2x-y)³ - (x+y)³ + (2y-x)³
➝ (2x-y)³ - (x+y)³ + (-x + 2y)³
➝ (2x-y)³ - (x+y)³ - (x - 2y)³ --------(1)
We know that,
(a-b)³ = a³ - b³ - 3ab (a-b)
(a + b)³ = a³ + b³ + 3ab (a+b)
Solving by properties,
(2x-y)³ = (2x)³ - (y)³ - 3×2x×y(2x-y)
➝ 8x³ - y³ - 6xy(2x-y)
➝ 8x³ - y³ - 12x²y + 6xy² --------(2)
(x+y)³ = (x)³ + (y)³ + 3xy ( x + y )
➝ x³ + y³ + 3x²y + 3xy² --------(3)
(x - 2y)³ = (x)³ - (2y)³ - 3×x×2y(x-2y)
➝ x³ - 8y³ - 6xy (x-2y)
➝ x³ - 8y³ - 6x²y + 12xy² --------(4)
Putting 2,3,4 in 1 ,
(2x-y)³ - (x+y)³ - (x - 2y)³
➝ 8x³ - y³ - 12x²y + 6xy² - (x³ + y³ + 3x²y + 3xy² ) - (x³ - 8y³ - 6x²y + 12xy²)
➝ 8x³ - y³ - 12x²y + 6xy² - x³ - y³ - 3x²y - 3xy² - x³ + 8y³ + 6x²y - 12xy²
➝ 8x³ - x³ - x³ - y³ - y³ + 2y³ - 12x²y -3x²y + 6x²y + 6xy² - 3xy² - 12xy²
➝ 8x³ - 2x³ - 2 y³ + 2y³ - 15x²y + 6x²y + 6xy² - 15xy²
➝ 6x³ + 4y³ - 9x²y - 9xy²
_____________________________________