Math, asked by kalinaaave, 6 months ago

2x² + 2x = 24, compeleting the square. ​

Answers

Answered by mysticd
0

 \underline{\pink{ Completing \: Square \:method : }}

 Given \: Quadratic \: equation :

 2x^{2} + 2x = 24

/* Dividing each term by 2 , we get */

 \implies x^{2} + x = 12

 \implies x^{2} + 2 \times  x\times \frac{1}{2}  = 12

 \implies x^{2} + 2 \times  x\times \frac{1}{2} + \Big(\frac{1}{2}\Big)^{2}  = 12 + \Big(\frac{1}{2}\Big)^{2}

 \implies \Big( x + \frac{1}{2}\Big)^{2} = 12 + \frac{1}{4}

 \implies \Big( x + \frac{1}{2}\Big)^{2} =  \frac{48+1}{4}

 \implies \Big( x + \frac{1}{2}\Big)^{2} =  \frac{49}{4}

 \implies  x + \frac{1}{2}=  \pm \sqrt{\frac{49}{4}}

 \implies  x = - \frac{1}{2}  \pm \frac{7}{2}

 \implies x = - \frac{1}{2} + \frac{7}{2} \: Or \: - \frac{1}{2} + \frac{7}{2}

 \implies x =  \frac{-1+7}{2} \: Or \:  \frac{-1 -7}{2}

 \implies x =  \frac{6}{2} \: Or \:  \frac{-8}{2}

 \implies x = 3 \: Or \: x = -4

Therefore.

 \green { x = 3 \: Or \: x = -4}

•••♪

Similar questions