Math, asked by patilambrish41, 5 months ago

- 2x2 + 3y2; 3y2 + 3 - x? and x2 + y2 + 5 - 3xy​

Answers

Answered by prerna2804
0

Step-by-step explanation:

Answer:

\red { Compound \: interest} \green {= Rs \:7804 }Compoundinterest=Rs7804

Step-by-step explanation:

Principal (P) = Rs \:62500Principal(P)=Rs62500

Time (T) = \frac{3}{2} \: years = 1\frac{1}{2} \: yearsTime(T)=

2

3

years=1

2

1

years

Rate \: of \: InterestAnswer:

\red { Compound \: interest} \green {= Rs \:7804 }Compoundinterest=Rs7804

Step-by-step explanation:

Principal (P) = Rs \:62500Principal(P)=Rs62500

Time (T) = \frac{3}{2} \: years = 1\frac{1}{2} \: yearsTime(T)=

2

3

years=1

2

1

years

Rate \: of \: Interest (r) = 8\% \: per \: annumRateofInterest(r)=8%perannum

rate for \:half \: yearly = \frac{1}{2} \times 8\% =4\%rateforhalfyearly=

2

1

×8%=4%

\begin{gathered}As \: interest \: is \: compounded \:half\\yearly, \:so \: number \: of \:conversion \:periods\\in \: 1\frac{1}{2} \: years \: is \: 3, \:So, \: n = 3\end{gathered}

Asinterestiscompoundedhalf

yearly,sonumberofconversionperiods

in1

2

1

yearsis3,So,n=3

\boxed { \pink { Amount (A) = P\left( 1 + \frac{r}{100} \right )^{n} }}

Amount(A)=P(1+

100

r

)

n

\begin{gathered}= 62500 \left( 1 + \frac{4}{100}\right)^{3}\\= 62500 \left( 1 + \frac{1}{25} \right)^{3}\\= 62500 \left( \frac{25+1}{25}\right)^{3}\\= 62500\times \left(\frac{26}{25}\right)^{3}\\= 62500 \times \frac{25}{26} \times \frac{25}{26} \times \frac{25}{26}\end{gathered}

=62500(1+

100

4

)

3

=62500(1+

25

1

)

3

=62500(

25

25+1

)

3

=62500×(

25

26

)

3

=62500×

26

25

×

26

25

×

26

25

= Rs\: 70304=Rs70304

\begin{gathered}Compound \: interest = A - P \\= 70304 - 62500 \\= Rs\:7804\end{gathered}

Compoundinterest=A−P

=70304−62500

=Rs7804

Therefore.,

\red { Compound \: interest} \green {= Rs \:7804 }Compoundinterest=Rs7804

•••♪ (r) = 8\% \: per \: annumRateofInterest(r)=8%perannum

rate for \:half \: yearly = \frac{1}{2} \times 8\% =4\%rateforhalfyearly=

2

1

×8%=4%

\begin{gathered}As \: interest \: is \: compounded \:half\\yearly, \:so \: number \: of \:conversion \:periods\\in \: 1\frac{1}{2} \: years \: is \: 3, \:So, \: n = 3\end{gathered}

Asinterestiscompoundedhalf

yearly,sonumberofconversionperiods

in1

2

1

yearsis3,So,n=3

\boxed { \pink { Amount (A) = P\left( 1 + \frac{r}{100} \right )^{n} }}

Amount(A)=P(1+

100

r

)

n

\begin{gathered}= 62500 \left( 1 + \frac{4}{100}\right)^{3}\\= 62500 \left( 1 + \frac{1}{25} \right)^{3}\\= 62500 \left( \frac{25+1}{25}\right)^{3}\\= 62500\times \left(\frac{26}{25}\right)^{3}\\= 62500 \times \frac{25}{26} \times \frac{25}{26} \times \frac{25}{26}\end{gathered}

=62500(1+

100

4

)

3

=62500(1+

25

1

)

3

=62500(

25

25+1

)

3

=62500×(

25

26

)

3

=62500×

26

25

×

26

25

×

26

25

= Rs\: 70304=Rs70304

\begin{gathered}Compound \: interest = A - P \\= 70304 - 62500 \\= Rs\:7804\end{gathered}

Compoundinterest=A−P

=70304−62500

=Rs7804

Therefore.,

\red { Compound \: interest} \green {= Rs \:7804 }Compoundinterest=Rs7804

•••♪

Similar questions