Math, asked by jcgerona91, 1 month ago

2x²-5x+3=0 discriminant and nature of the roots

Answers

Answered by AasishThakuri
0

Step-by-step explanation:

\large\text{Given:}Given:

\rightarrowtail \bold{Acceleration (a) = 5 cm/s}↣Acceleration(a)=5cm/s

\rightarrowtail \bold{Final\;velocity(v)=50cm/s}↣Finalvelocity(v)=50cm/s

\rightarrowtail \bold{Initial\;velocity(u)=0cm/s}↣Initialvelocity(u)=0cm/s

∵ Car is moving from rest.

\large\text{To find:}To find:

\rightarrowtail\bold{Time\;taken(t)}↣Timetaken(t)

\rightarrowtail \bold{Distance\;covered(S)}↣Distancecovered(S)

\large\text{Solution:}Solution:

Using the first equation of motion.

\mapsto\bold{v=u+at}↦v=u+at

Where we have.

\twoheadrightarrow\bold{v=\dfrac{50}{100}m/s }↠v=

100

50

m/s

\twoheadrightarrow\bold{a=\dfrac{5}{100}m/s^{2} }↠a=

100

5

m/s

2

\twoheadrightarrow\bold{u=0m/s}↠u=0m/s

Substituting we get.

\nrightarrow \bold{0.5 = 0 + 0.05(t)}↛0.5=0+0.05(t)

\nrightarrow \bold{0.5=0.05t}↛0.5=0.05t

\nrightarrow\bold{t=\dfrac{0.5}{0.05} }↛t=

0.05

0.5

∴ Time taken (t) is 10 seconds.

Using the second equation of motion.

\mapsto \bold{S=ut+\dfrac{1}{2}at^{2} }↦S=ut+

2

1

at

2

Where we have.

\twoheadrightarrow \bold{u=0m/s}↠u=0m/s

\twoheadrightarrow \bold{a=0.05m/s^{2}}↠a=0.05m/s

2

\twoheadrightarrow\bold{t=10sec}↠t=10sec

Substituting we get.

\nrightarrow \bold{S=0(10)+\dfrac{1}{2}(0.05)(10)^{2} }↛S=0(10)+

2

1

(0.05)(10)

2

\nrightarrow \bold{S=0+0.025(100)}↛S=0+0.025(100)

∴ The distance covered is 2.5 meters.

Similar questions