Math, asked by naveenn0273, 2 months ago

2x2-x+1/8=0 Solve by Formula method​

Answers

Answered by Anonymous
61

Answer:

Given :-

\mapsto \sf\bold{2x^2 - x + \dfrac{1}{8} =\: 0}

To Find :-

  • What is the value of x.

Solution :-

\implies \sf \bold{\purple{2x^2 - x + \dfrac{1}{8} =\: 0}}

\implies \sf \dfrac{16x^2 - 8x + 1}{8} =\: 0

By doing cross multiplication we get,

\implies \sf 16x^2 - 8x + 1 =\: 0

\implies \sf 16x^2 - (4 + 4)x + 1 =\: 0

\implies \sf 16x^2 - 4x - 4x + 1 =\: 0\: \: \bigg\lgroup \sf\bold{\pink{By\: splitting\: the\: middle\: term}}\bigg\rgroup\\

\implies \sf 4x(4x - 1) - 1(4x - 1) =\: 0

\implies \sf (4x - 1) (4x - 1) =\: 0

\longrightarrow \sf (4x - 1) =\: 0

\longrightarrow \sf 4x - 1 =\: 0

\longrightarrow \sf 4x =\: 1

\longrightarrow \sf\bold{\red{x =\: \dfrac{1}{4}}}

Either,

\longrightarrow \sf (4x - 1) =\: 0

\longrightarrow \sf 4x - 1 =\: 0

\longrightarrow \sf 4x =\: 1

\longrightarrow \sf\bold{\red{x =\: \dfrac{1}{4}}}

{\normalsize{\bold{\underline{\therefore\: The\: value\: of\: x\: is\: \dfrac{1}{4}\: or\: \dfrac{1}{4}\: .}}}}

Answered by XxHappiestWriterxX
115

 \:  \:  \:  \:  \:  \:  \:  \:  \: ❍ \large  \:  \:  \: \underline{\boxed{ \frak{\pmb{ Question: }}}}

❍ \:  \:  \rm2 {x}^{2} -x+ \dfrac{1}{8} =0   \\  \\   \:  \:  \:  \:  \:  \:  \:  \: \rm\underline{ Solve  \: by  \: Formula  \: method}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \:  \:  \:  \:  \:  \:  \:  \:  \: ❍ \large  \:  \:  \: \underline{\boxed{ \frak{\pmb{ given  \: equation = 2 {x}^{2} -x+ \frac{1}{8} =0}}}}

\:  \:  \:  \ \: :  \:  \: ❍ \large   \:  \:  \underline{\boxed{ \frak{\pmb{ Solution: }}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \rightarrow {\underline{\underline{\rm2 {x}^{2}  - x +  \dfrac{1}{8}  = 0}}} \\  \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \: \rightarrow {\underline{\underline{\rm \dfrac{16 {x}^{2}  - 8x + 1 }{8}  = 0}}}

\:  \:  \:  \:  \:  \:  \:  \:  \: ❍ \large  \:  \:  \: \underline{\boxed{ \frak{\pmb{ \pink{Cross  \: Multiplication :}  }}}}

 \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \:  \:  \:  \rm \rightarrow16 {x}^{2}  - 8x + 1 = 0 \\  \\\: \:  \:  \:  \:  \:  \:  \:  \: \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \: \rm \rightarrow16 {x}^{2}   - (4 + 4)x + 1 = 0 \\  \\  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:\rm \rightarrow16 {x}^{2}  - 4x - 4x + 1 = 0 \\  \\ \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \rm \rightarrow4x(4x - 1) - 1(4x - 1) = 0 \\  \\  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\rm \rightarrow(4x - 1) (4x - 1)= 0 \\  \\ \:  \:  \:  \:  \:  \:  \:  \: \rm \rightarrow(4x - 1) = 0 \\  \\  \:  \:  \:  \:  \:  \:  \:  \:\rm \rightarrow4x - 1 = 0 \\  \\ \rm \rightarrow4x = 1 \\  \\ \rm  \rightarrow{\underline{\underline{ x =  \dfrac{1}{4} }}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  ▬▬▬▬▬▬▬▬▬▬▬▬▬ \:  \:

 \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:❍ \:  \:  \:  \: {\underline{\underline{\underline {{{\rm Hence \:  the \:  value \:  of  \: x  \: is \:  \dfrac{1}{4}}}}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  ▬▬▬▬▬▬▬▬▬▬▬▬▬ \:  \:

Similar questions