2x³ differential coefficient
Answers
Answered by
0
Answer:
f'(x)=limh→0f(x+h)−f(x)h
f(x)=x3−2x2+x4+6
f(x+h)=(x+h)3−2(x+h)2+x+h4+6
f'(x)=limh→0(x+h)3−2(x+h)2+x+h4+6−(x3−2x2+x4+6)h
f'(x)=limh→0(x+h)3−2(x+h)2+x+h4+6−x3+2x2−x4−6h
f'(x)=limh→0(x+h)3−2(x+h)2+x+h4−x3+2x2−x4h
f'(x)=limh→0(x+h)3−2(x2+2xh+h2)+x+h4−x3+2x2−x4h
f'(x)=limh→0(x+h)3−2x2−4xh−2h2+x+h4−x3+2x2−x4h
f'(x)=limh→0(x+h)3−4xh−2h2+x+h4−x3−x4h
f'(x)=limh→0(x+h)(x2+2xh+h2)−4xh−2h2+x4+h4−x3−x4h
f'(x)=limh→0(x+h)(x2+2xh+h2)−4xh−2h2+h4−x3h
f'(x)=limh→0x3+2x2h+xh2+hx2+2xh2+h3−4xh−2h2+h4−x3h
f'(x)=limh→02x2h+xh2+hx2+2xh2+h3−4xh−2h2+h4h
f'(x)=limh→0h⋅(2x2+xh+x2+2xh+h2−4x−2h+14)h
f'(x)=limh→02x2+xh+x2+2xh+h2−4x−2h+14
f'(x)=2x2+x(0)+x2+2x(0)+(0)2−4x−2(0)+14
f'(x)=2x2+x2−4x+14
f'(x)=3x2−4x+14
Similar questions