(2x3−x+1+x2)+(x3+6x−7)+(−3x2−11+2x)
Answers
Answer:
(i) (x + 1)2 = 2(x – 3)
(ii) x2 – 2x = (–2)(3 – x)
(iii) (x – 2)(x + 1) = (x – 1)(x + 3)
(iv) (x – 3)(2x + 1) = x(x + 5)
(v) (2x – 1) (x – 3) – (x + 5) (x – 1)
(vi) x2 + 3x +1 = (x – 2)2
(vii) (x + 2)3 = 2x(x2 – 1)
(viii) x3 – 4x2 – × + 1 = (x – 2)3
Sol. (i) (x + 1)2 = 2(x – 3)
We have:
(x + 1)2 = 2 (x – 3) x2 + 2x + 1 = 2x – 6
⇒ x2 + 2x + 1 – 2x + 6 = 0
⇒ x2 + 70
Since x2 + 7 is a quadratic polynomial
∴ (x + 1)2 = 2(x – 3) is a quadratic equation.
(ii) x2– 2x = (–2) (3 – x)
We have:
x2 – 2x = (– 2) (3 – x)
⇒ x2 – 2x = –6 + 2x
⇒ x2 – 2x – 2x + 6 = 0
⇒ x2 – 4x + 6 = 0
Since x2 – 4x + 6 is a quadratic polynomial
∴ x2 – 2x = (–2) (3 – x) is a quadratic equation.