Math, asked by 6kimmyhed9, 11 hours ago

2x³-x²-12 divided by x+3
The form of your answer should either be
p(x) or p(x)+k/x+3 where p(x) is a polynomial and k is an integer

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\dfrac{ {2x}^{3}  -  {x}^{2}  - 12}{x + 3}

can be rewritten as

\rm :\longmapsto\:\dfrac{ {2x}^{3}  -  {x}^{2} + 0x  - 12}{x + 3}

Now, using Method of Long Division, we have

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\: 2{x}^{2} -7x + 21\:\:}}}\\ {\underline{\sf{x + 3}}}& {\sf{\: 2{x}^{3}  -{x}^{2} + 0x - 12 \:\:}} \\{\sf{}}& \underline{\sf{\:  - 2{x}^{3} - 6{x}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: \:\:}} \\ {{\sf{}}}& {\sf{\: \:    \:  \:  \:  \:  \: \: -7{x}^{2} + 0x - 12  \:\:}} \\{\sf{}}& \underline{\sf{\:\: \:  \:  \:  \:  \:  \:  \:  \: 7{x}^{2} + 21x  \:  \:\:}} \\ {\underline{\sf{}}}& {\sf{\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 21x - 12  \:\:}} \\{\sf{}}& \underline{\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:   - 21x - 63\:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - 75\:\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered}

Hence,

\rm :\longmapsto\:\dfrac{ {2x}^{3}  -  {x}^{2}  - 12}{x + 3}  =  {2x}^{2} - 7x + 21 +  \dfrac{ - 75}{x + 3}

VERIFICATION

Consider,

\rm :\longmapsto\:{2x}^{2} - 7x + 21 +  \dfrac{ - 75}{x + 3}

\rm \:  =  \: \dfrac{(x + 3)( {2x}^{2} - 7x + 21) - 75 }{x + 3}

\rm \:  =  \: \dfrac{{2x}^{3} - 7 {x}^{2}  + 21x +  {6x}^{2} - 21x + 63  - 75 }{x + 3}

\rm \:  =  \: \dfrac{ {2x}^{3} -  {x}^{2}   -  12}{x + 3}

Hence, Verified

Similar questions