Math, asked by alsal, 1 year ago

2x⁴+x³ 14x² - 19x- 6

Answers

Answered by HarishAS
11
Hey friend , Harish here.

Here is your answer:

2x^4 +x^3 - 14x^2 - 19x -6

⇒  \bigl ( 2x^4 + x^3 \bigr ) - \bigl ( 14x^2 + 19x + 6 \bigr )

⇒  x^3 \bigl( 2x +1 \bigr ) - \bigl ( 14x^2 + 12x + 7x + 6 \bigr )

⇒  x^3 \bigl( 2x +1 \bigr ) - \bigl [ 2x \bigl (7x+6 \bigr ) + 1 \bigl (7x+6 \bigr )  \ \bigr ]

⇒  x^3 \bigl( 2x +1 \bigr ) - \bigl [  \bigl (2x+1 \bigr ) \bigl (7x+6 \bigr ) \ \bigr ]

(Taking 2x + 1 as common ).

⇒ \bigl (2x+1 \bigr ) \bigl [ x^3 -  7x - 6 \bigr ]

⇒ \bigl (2x+1 \bigr ) \bigl [ x^3 + x^2 -x^2 - 7x - 6 \bigr ]

( Here we are adding and subtracting x². )

⇒ \bigl (2x+1 \bigr ) \bigl [ (x^3 + x^2 )  - \bigl( x^2 + 7x +6 \bigr ) \bigr ]

⇒ \bigl (2x+1 \bigr ) \bigl [  x^2(x + 1 )  - \bigl( x^2 + 1x+ 6x + 6 \bigr ) \bigr ]

⇒ \bigl (2x+1 \bigr ) \bigl [  x^2(x + 1 )  - \bigl( x+6 \bigr )(x+1) \bigr ]

( Now inside the square brackets, take x+1 as common )

⇒ \bigl (2x+1 \bigr ) \bigl [ (x+1) \bigl(x^2 -x - 6 \bigr ) \bigr ]

⇒ (2x-1)(x+1) \bigl ( x^2 + 2x - 3x - 6 \bigr )

⇒  \boxed{\bigl ( 2x-1 \bigr ) \bigl (x+1 \bigr ) \bigl ( x+2 \bigr ) \bigl( x-3 \bigr )}
______________________________________________________

Hope my answer is helpful to you.

Similar questions