Math, asked by Brijeshkumar649, 1 year ago

2xsquaer -(2+k)x+k=0 solution

Answers

Answered by Swarup1998
9

A. By quadratic formula :

The given equation is

2x^{2}-(2+k)x+k=0

Comparing it with the standard quadratic equation ax^{2}+bx+c=0,\:a\neq 0, we get

a = 2, b = - (2 + k) and c = k

By quadratic formula, we get

x = \frac{-b\pm \sqrt{b^{2}-4ac}}{2a}

=\frac{2+k\pm \sqrt{(2+k)^{2}-4.2.k}}{2.2}

=\frac{2+k\pm \sqrt{4+4k+k^{2}-8k}}{4}

=\frac{2+k\pm \sqrt{2^{2}-4k+k^{2}}}{4}

=\frac{2+k\pm \sqrt{(2-k)^{2}}}{4}

=\frac{2+k\pm (2-k)}{4}

=\frac{2+k+2-k}{4},\:\frac{2+k-2+k}{4}

=\frac{4}{4},\:\frac{2k}{4}

=1,\:\frac{k}{2},

which is the required solution.

B. By middle term formula :

Now, 2x² - (2+k)x + k = 0

⇒ 2x² - 2x - kx + k = 0

⇒ 2x (x - 1) - k (x - 1) = 0

⇒ (x - 1) (2x - k) = 0

Either x - 1 = 0 or, 2x - k = 0

      ⇒ x = 1 , x = k/2

Therefore, the required solution be

                   x = 1 , k/2

Similar questions