Math, asked by namratakaushal0, 10 months ago

2xsquare +x-4=0 by completing square method ​

Answers

Answered by Anonymous
9

 \large\bf\underline{Given:-}

  • equation :- 2x² + x - 4 = 0

 \large\bf\underline {To \: find:-}

  • Find the value of x by completing the square method

 \huge\bf\underline{Solution:-}

equation :- 2x² + x - 4 = 0

Divide both side by 2.

\rightarrowtail \rm \: 2 {x}^{2}  + x - 4 = 0 \\  \\ \rightarrowtail \rm \:  \frac{ {2x}^{2} }{2}  +  \frac{x}{2}  -  \frac{4}{2}  =  \frac{0}{2}  \\  \\ \rightarrowtail \rm \:  {x}^{2}  +  \frac{x}{2}  - 2 = 0

write the equation in the form :-

 \:  \:  \:  \:  \:  \:  \blacktriangleright \:  \:  \:  \:  \:  \:   \: { \rm {x}^{2}  + bx = c}

\rightarrowtail \rm \:  {x}^{2}  +  \frac{x}{2}  = 2

Add (1/4)² on both sides.

\rightarrowtail \rm \:  {x}^{2}  +  \frac{x}{2}  +  \frac{1}{16}  = 2 +  \frac{1}{16}  \\  \\ \rightarrowtail \rm \: (x +  \frac{1}{4} ) {}^{2}  = 2 +  \frac{1}{16}  \\  \\ \rightarrowtail \rm \: (x +  \frac{1}{4}  {)}^{2}  =  \frac{32 + 1}{16}  \\  \\ \rightarrowtail \rm \: (x +  \frac{1}{4}  {)}^{2}  =  \frac{33}{16}  \\  \\ \rightarrowtail \rm \: x +  \frac{1}{4}  =  \sqrt{ \frac{33}{16} }  \\  \\ \rightarrowtail \rm \: x +  \frac{1}{4}  =  \frac{ \sqrt{33} }{4}  \\  \\ \rightarrowtail \rm \: x =  \frac {  \pm\sqrt{33} }{4}  -  \frac{1}{4}  \\  \\ \rightarrowtail \rm \: x =  \frac{ \sqrt{33}  - 1}{4}  \:  \: \\  \\  \rightarrowtail \rm \: or \:  \: x =  \frac{ - ( \sqrt{33}  +  1) }{4}

So, the roots of the given equation are :-

 \bf \: x =  \frac{ \sqrt{33}  - 1}{4}  \:  \:  \: or \:  \:  \: x =  \frac{ - ( \sqrt{33}   + 1)}{4}

Answered by Anonymous
5

\sf\blue{Correct \ equation:}

\sf{Find \ the \ roots \ of \ the \ quadratic \ equation}

\sf{2x^{2}+x-4=0 \ by \ completing \ the}

\sf{square \ method.}

____________________________________

\sf\red{\underline{\underline{Answer:}}}

\sf{\frac{-1+\sqrt33}{4} \ and \ \frac{-1-\sqrt33}{4} \ are \ roots \ of \ the}

\sf{given \ quadratic \ equation.}

\sf\orange{Given:}

\sf{The \ given \ quadratic \ equation \ is}

\sf{\implies{2x^{2}+x-4=0}}

\sf\pink{To \ find:}

\sf{The \ roots \ of \ the \ equation.}

\sf\green{\underline{\underline{Solution:}}}

\sf{The \ given \ quadratic \ equation \ is}

\sf{\implies{2x^{2}+x-4=0}}

\sf{Dividing \ the \ equation \ throughout \ by \ 2}

\sf{\implies{x^{2}+\frac{x}{2}-2=0}}

\sf{\implies{x^{2}+\frac{x}{2}=2}}

__________________________________

\sf{(\frac{1}{2}\times \ Coefficient \ of \ x)^{2}}

\sf{\implies{(\frac{1}{2}\times\frac{1}{2})^{2}}}

\sf{\implies{(\frac{1}{4})^{2}}}

\sf{\implies{\frac{1}{16}}}

__________________________________

\sf{Add \ \frac{1}{16} \ on \ both \ sides \ of \ the \ equation}

\sf{\implies{x^{2}+\frac{x}{2}+\frac{1}{16}=2+\frac{1}{16}}}

\sf{\implies{x^{2}+\frac{x}{2}+\frac{1}{16}=\frac{32+1}{16}}}

\sf{\implies{(x+\frac{1}{4})^{2}=\frac{33}{16}}}

\sf{On \ taking \ square \ root \ of \ both \ sides}

\sf{\implies{x+\frac{1}{4}=\frac{\sqrt33}{4} \ or \ -\frac{\sqrt33}{4}}}

\sf{\implies{x=\frac{-1}{4}+\frac{\sqrt33}{4} \ or \ \frac{-1}{4}-\frac{\sqrt33}{4}}}

\sf{\implies{x=\frac{-1+\sqrt33}{4} \ or \ \frac{-1-\sqrt33}{4}}}

\sf\purple{\tt{\therefore{\frac{-1+\sqrt33}{4} \ and \ \frac{-1-\sqrt33}{4} \ are \ roots \ of \ the}}}

\sf\purple{\tt{given \ quadratic \ equation.}}

Similar questions