Math, asked by suryamouli, 3 months ago

(2xy+1)y DX + (1+2xy-x³y³)x dy = 0​

Answers

Answered by pulakmath007
10

SOLUTION

TO SOLVE

\displaystyle\sf{(2xy + 1)y \: dx + (1 + 2xy -  {x}^{3} {y}^{3})x \: dy = 0  }

EVALUATION

Here the given differential equation is

\displaystyle\sf{(2xy + 1)y \: dx + (1 + 2xy -  {x}^{3} {y}^{3}) x\: dy = 0  }

\displaystyle\sf{ \implies \: 2x {y}^{2}dx + y \: dx +  xdy+ 2 {x}^{2} ydy -  {x}^{4} {y}^{3}\: dy = 0  }

\displaystyle\sf{ \implies \: 2x {y}^{2}dx + 2 {x}^{2} ydy+ y \: dx +  xdy -  {x}^{4} {y}^{3}\: dy = 0  }

\displaystyle\sf{ \implies \: 2xy( ydx + xdy)+ (y \: dx +  xdy )-  {x}^{4} {y}^{3}\: dy = 0  }

\displaystyle\sf{ \implies \: 2xy \: d(xy) + d(xy) -  {x}^{4} {y}^{3}\: dy = 0  }

\displaystyle\sf{ \implies \:  \frac{2xy \: d(xy)}{ {x}^{4} {y}^{4}  }  +  \frac{d(xy)}{ {x}^{4} {y}^{4} }  -   \frac{{x}^{4} {y}^{3}\: dy}{ {x}^{4} {y}^{4} }  = 0  }

\displaystyle\sf{ \implies \:  \frac{2 \: d(xy)}{ {x}^{3} {y}^{3}  }  +  \frac{d(xy)}{ {x}^{4} {y}^{4} }  -   \frac{dy}{ y}  = 0  }

Let z = xy

Then from above we get

\displaystyle\sf{  \frac{2 \: dz}{ {z}^{3} }  +  \frac{dz}{ {z}^{4}  }  -   \frac{dy}{ y}  = 0  }

\displaystyle\sf{ \implies \:  2 {z}^{ - 3}dz+  {z}^{ - 4}dz  -   \frac{dy}{ y}  = 0  }

On integration we get

\displaystyle\sf{ \int \:  2 {z}^{ - 3}dz+   \int{z}^{ - 4}dz  -  \int  \frac{dy}{ y}  = 0  }

\displaystyle\sf{ \implies \:   - \frac{ 1}{ {z}^{2} }   -   \frac{1}{3 {z}^{3}  }  -   \log \:  |y|  =  - c  }

\displaystyle\sf{ \implies \:    \frac{ 1}{ {x}^{2}  {y}^{2} }    +    \frac{1}{3 {x}^{3}  {y}^{3}  }   +    \log \:  |y|  = c  }

Where C is integration constant

FINAL ANSWER

Hence the required solution is

 \boxed{ \:  \: \displaystyle\sf{ \:    \frac{ 1}{ {x}^{2}  {y}^{2} }    +    \frac{1}{3 {x}^{3}  {y}^{3}  }   +    \log \:  |y|  = c  } \:  \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. M+N(dy/dx)=0 where M and N are function of

(A) x only

(B) y only

(C) constant

(D) all of these

https://brainly.in/question/38173299

2. This type of equation is of the form dy/dx=f1(x,y)/f2(x,y)

(A) variable seprable

(B) homogeneous

(C) exact

(D) none ...

https://brainly.in/question/38173619

Answered by barani79530
0

Step-by-step explanation:

please mark as best answer and thank me

Attachments:
Similar questions