Math, asked by purva6199, 2 months ago

2xy
Q.30 If sinA+ sin B = x and cos A+ cos B=y then show that sin(A + B) = 2xy/x²+y²​

Answers

Answered by vishnu166724ga
1

Answer:

It is given that A+B+C=0⇒C=−(A+B)

Now, x

2

+2xysinC+y

2

=sin

2

A+2sinAcosBsinC+cos

2

B=sin

2

A+2sinAcosBsin(−(A+B))+cos

2

B

=sin

2

A−2sinAcosB[sinAcosB+cosAsinB]+cos

2

B

=sin

2

A−2sinAcosBsinAcosB−2sinAcosBcosAsinB+cos

2

B

=sin

2

A−sin

2

Acos

2

B+cos

2

B−sin

2

Acos

2

B−2sinAcosBcosAsinB

=sin

2

A(1−cos

2

B)+cos

2

B(1−sin

2

A)−2sinAcosBcosAsinB

=sin

2

Asin

2

B+cos

2

Bcos

2

A−2sinAcosBcosAsinB

=sin

2

Asin

2

B−sinAcosBcosAsinB+cos

2

Bcos

2

A−sinAcosBcosAsinB

=sinAsinB[sinAsinB−cosAcosB]+cosAcosB[cosAcosB−sinAsinB]

=sinAsinB[sinAsinB−cosAcosB]−cosAcosB[sinAsinB−cosAcosB]

=[sinAsinB−cosAcosB][sinAsinB−cosAcosB]

=[−cos(A+B)][−cos(A+B)]

which can be written as

=cos(−(A+B))cos(−(A+B))=cos

2

Answered by selviyashwant
0

Step-by-step explanation:

prove that

Sin(A+B)= 2ab/ a^2+b^2

Sin(A+B) = sin A cos B +CosA SinB

Cos(A+B) = cos A cosB + SinA SinB

Finding a^2 +b^2 (1)

a^2 +b^2= sin^2A +sin^2B +2sinA SinB + Cos^2A +Cos^2B + 2Cos A Cos B

= 1+1 +2 ( CosA CosB + SinA SinB )

=2+2( CosA cos B +sinA SinB)

a^2+b^2 --2 =2 Cos(A-B) )

Cos (A-B) = (a^2+b^2 )/2 --1 (1)

Finding values of ab (2)

2ab =2 (sinA +SinB ) (CosA +CosB)

= 2 [ sinA CosA + SinA cos B + SinB Cos A + SinB Cos B]

2ab= 2 (1+ Cos A CosB + SinA SinB )

ab= [1+ cos(A --B)]

ab=1 +(a^2+b^2)/2 --1 from (1)

ab=( a^2+b^2)/2

Hence sin(A+B) = 2ab /a^2+b^2

LH S =R H S

Hope so that it was useful

Similar questions