Math, asked by harish11369, 11 months ago

(2xy+y-tany)dx+(x^2-xtan^2y+sec^2y)dy=0

Answers

Answered by anjanirawat6
0

Answer:

THE QUESTION YOU ASKED MAKEN ME

Answered by KingSrikar
4

\sf{\left(2xy+y-\tan \left(y\right)\right)dx+\left(x^2-x\tan ^2\left(y\right)+\sec ^2\left(y\right)\right)dy=0}

\rule{310}{1}

\textsf{An ODE $\sf{M(x, y)+N(x, y) y^{\prime}=0}$ is in exact form if the following holds :}

\textsf{There exists a function $\sf{\Psi(x, y)}$ such that $\sf{\Psi_{x}(x, y)=M(x, y), \quad \Psi_{y}(x, y)=N(x, y)}$}

\textsf{$\sf{\Psi(x, y)}$ has continuous partial derivatives: $\sf{\frac{\partial M(x, y)}{\partial y}=\frac{\partial^{2} \Psi(x, y)}{\partial y \partial x}=\frac{\partial^{2} \Psi(x, y)}{\partial x \partial y}=\frac{\partial N(x, y)}{\partial x}}$}

\rule{310}{1}

Let y be the dependent variable, Divide by dx :

\to\sf{\displaystyle 2xy+y-\tan \left(y\right)+\left(x^2-x\tan ^2\left(y\right)+\sec ^2\left(y\right)\right)\frac{dy}{dx}=0}

Substitute dy/dx with y'

\to\sf{2xy+y-\tan \left(y\right)+\left(x^2-x\tan ^2\left(y\right)+\sec ^2\left(y\right)\right)y'\:=0}

  • The Equation is in Exact Form

\sf{\mathsf{If\:the\:conditions\:are\:met,\:then\:}\Psi _x+\Psi _y\cdot \:y'=\frac{d\Psi \left(x,\:y\right)}{dx}=0}

  • \sf{\mathsf{The\:general\:solution\:is\:}\Psi \left(x,\:y\right)=C}

\bigstar\:\:\sf{\Psi \left(x,\:y\right)=c_2}

\to\sf{\tan \left(y\right)+x^2y-x\left(-y+\tan \left(y\right)\right)+c_1=c_2}

\to\sf{\tan \left(y\right)+x^2y-x\left(-y+\tan \left(y\right)\right)=c_1}

Similar questions