Math, asked by ashessenapati111, 3 months ago

2xydy - (x2 + y2 + 1)dx=0 is​

Answers

Answered by allysia
3

Answer:

\\\tt y^2 = x^2 -1 + Cx

Step-by-step explanation:

Rearrange:

\\\tt 2y\dfrac{dy}{dx}  - \dfrac{y^2}{x}  = x + \dfrac{1}{x}

Substitute:

Let \\\tt y^2 = t

Then differentiating both sides with respect to dx

\\\tt 2y\dfrac{dy}{dx}  = \dfrac{dt}{dx}\\\tt

We have,

\\\tt \dfrac{dt}{dx}  - \dfrac{1}{x}(t)  = x + \dfrac{1}{x}

Integrate on form:

\\\tt \dfrac{dy}{dx} +P(x)y = Q(x)

Integrating factor (IF):

\\\tt e^{\int - \dfrac{1}{x} } = e^{-log_ex} \\\tt   e^{log_e(\frac{1}{x} )}  = \dfrac{1}{x}

Now, Using general form for integration:

\\\tt I.F.y = \int I.F \  Q(x) dx

\\\tt \dfrac{1}{x}  (t)  = \int \dfrac{1}{x} (x + \dfrac{1}{x} ) dx  \\\tt = \int (1+ \dfrac{1}{x^2} )dx\\ \\\tt   \dfrac{1}{x}  (t)= x -\dfrac{1}{x}+C \\\tt t = x^2 -1 + Cx

Using value of t here:

\\\tt y^2 = x^2 -1 + Cx

Similar questions