Math, asked by bukharisyedtazeer, 2 months ago


2y-3x=100
x+6y=50

please answer i will mark you as brainliest​

Answers

Answered by BrainlyTwinklingstar
6

Answer

\sf \dashrightarrow 2y - 3x = 100 \: \: --- (i)

\sf \dashrightarrow x + 6y = 50 \: \: --- (ii)

By first equation,

\sf \dashrightarrow 2y - 3x = 100

\sf \dashrightarrow -3x = 100 - 2y

\sf \dashrightarrow x = \dfrac{100 - 2y}{-3}

Now, let's find the value of y by second equation.

\sf \dashrightarrow x + 6y = 50

\sf \dashrightarrow \dfrac{100 - 2y}{-3} + 6y = 50

\sf \dashrightarrow \dfrac{100 - 2y - 18y}{-3} = 50

\sf \dashrightarrow \dfrac{100 - 20y}{-3} = 50

\sf \dashrightarrow 100 - 20y = 50 \times (-3)

\sf \dashrightarrow 100 - 20y = -150

\sf \dashrightarrow -20y = -150 - 100

\sf \dashrightarrow -20y = -250

\sf \dashrightarrow y = \dfrac{-250}{-20}

\sf \dashrightarrow y = \dfrac{25}{2}

Now, let's find the value of x by first equation.

\sf \dashrightarrow 2y - 3x = 100

\sf \dashrightarrow 2y - 3 \bigg( \dfrac{25}{2} \bigg) = 100

\sf \dashrightarrow 2y - \dfrac{75}{2} = 100

\sf \dashrightarrow \dfrac{4y - 75}{2} = 100

\sf \dashrightarrow 4y - 75 = 100 \times 2

\sf \dashrightarrow 4y - 75 = 200

\sf \dashrightarrow 4y = 200 + 75

\sf \dashrightarrow 4y = 275

\sf \dashrightarrow y = \dfrac{275}{4}

Hence, the values of x and y are 25/2 and 275/4 respectively.

Similar questions