Math, asked by 13chandrika, 1 year ago

(√3 +1)(1-√12)+9/(√3+√12) Simplify.

Answers

Answered by DaIncredible
5

Identity used :

(a + b)(a - b) =  {a}^{2}  -  {b}^{2}

First, Simplifying √12 = √2 × 2 × 3

i.e. √2² × 3 = 2√3

Now,

 \frac{( \sqrt{3} + 1)(1 -  2\sqrt{3}) + 9  }{ \sqrt{3}  +  2\sqrt{3} }  \\  \\  =  \frac{ \sqrt{3}(1 - 2 \sqrt{3}) + 1(1 - 2 \sqrt{3}) + 9   }{ \sqrt{3}  + 2 \sqrt{3} }  \\  \\  =  \frac{ \sqrt{3}  - 2 \sqrt{ {3}^{2} }  + 1 - 2 \sqrt{3}  + 9}{ \sqrt{3}  + 2 \sqrt{3} }  \\  \\  =  \frac{ \sqrt{3} - 2 \times 3 + 1 + 9  - 2 \sqrt{3}  }{ \sqrt{3} + 2 \sqrt{3}  }  \\  \\  =  \frac{ \sqrt{3} - 2 \sqrt{3}  - 6 + 1 + 9 }{ \sqrt{3} + 2 \sqrt{3}  }  \\  \\  =  \frac{ -  \sqrt{3} + 4 }{ \sqrt{3} + 2 \sqrt{3}  }  \\  \\  =  \frac{4 -  \sqrt{3} }{ \sqrt{3} + 2 \sqrt{3}  }  \\

Rationalizing the denominator we get,

 =  \frac{4 -  \sqrt{3} }{ \sqrt{3} + 2 \sqrt{3}  }  \times  \frac{ \sqrt{3}  - 2 \sqrt{3} }{ \sqrt{3}  - 2 \sqrt{3} }  \\  \\  =  \frac{4( \sqrt{3} - 2 \sqrt{3} ) -  \sqrt{3}  ( \sqrt{3}  - 2 \sqrt{3}) }{ {( \sqrt{3} )}^{2}  -  {(2 \sqrt{3}) }^{2}  }  \\  \\  =  \frac{4 \sqrt{3} - 8 \sqrt{3} - 3 + 2 \times 3  }{3 - 4 \times 3}  \\  \\  =   \frac{ - 4 \sqrt{3}  - 3 + 6}{3 - 12}  \\  \\  =  \frac{ - 4 \sqrt{3} + 3 }{ - 9}  \\  \\  =  \frac{4 \sqrt{3}  - 3}{9}

Hope it helps! ;)

Similar questions