Math, asked by umeshpatel5186, 9 months ago

√3 + 1/ √3 - 1 = a + b √3​

Answers

Answered by ayaan9864
0

Answer:

√3-1\√3+1=a-b√3

(Rationalize the denominator)

In LHS(left hand side)

= (√3-1)(√3-1)\(√3+1)(√3-1)

= 3+1-2√3\3-1

=4-2√3\2

(Taking 2 common from numerator)

=2-√3 (1)

In RHS

a-b√3. (2)

A.T.Q(according to question)

(1)=(2)

2-√3=a-b√3 (Comparing both equations)

So, a=2,b=1.

Step-by-step explanation:

follow me

Answered by Brainlyheros
2

Answer:

According to your question we have to find the value of A and B by solving the equation given above

First of all we have to rationalize the denominator then we will be able to find the value of A and B

let us find

 \frac{ \sqrt{3} + 1 }{ \sqrt{3} - 1 }  = a + b \sqrt{3}  \\  \\  =  \geqslant  \frac{ \sqrt{3 }  + 1}{ \sqrt{3}  - 1}  \times  \frac{ \sqrt{3} + 1 }{ \sqrt{3} + 1 }  = a + b \sqrt{3}  \\  \\  =  \geqslant  \frac{( \sqrt{3} + 1) {}^{2}  }{( \sqrt{3}) {}^{2}  -  {(1)}^{2}   }  = a + b \sqrt{3}  \\  \\  =  \geqslant  \frac{3 + 1 +  2\sqrt{3} }{3 - 1}  = a + b \sqrt{3}  \\  \\  =  \geqslant  \frac{4 + 2 \sqrt{3} }{2}  = a + b \sqrt{3}  \\  \\  =  \geqslant  \frac{2(2 +  \sqrt{3}) }{2}  = a + b \sqrt{3}  \\  \\  =  \geqslant 2 +  \sqrt{3}  = a + b \sqrt{3}  \\  \\  =  \geqslant a = 2 \\  \\  =  \geqslant b \sqrt{3}  =  \sqrt{3}  = 1 \\  \\  \sqrt{3}  \: will \: be \: cancelled \: from \:  \sqrt{3}

Similar questions