Math, asked by tududeben2020, 10 months ago

√3-1/√3+1=a+b√3 then a^2+b^2=?

Answers

Answered by shaikafham2
0

Answer:

Hi

Plz check the attached image

Attachments:
Answered by BrainlyPopularman
5

ANSWER :

a² + b² = 5

EXPLANATION :

GIVEN :

  { \:  \: \:  \: \bold { \frac{ \sqrt{3}  - 1}{ \sqrt{3} + 1 }  = a + b \sqrt{3} } }\\

TO FIND :

a² + b² = ?

SOLUTION :

According to the question –

 \\   \:  \: { \implies \bold { \frac{ \sqrt{3}  - 1}{ \sqrt{3} + 1 }  = a + b \sqrt{3} }} \\

• Now rationalization –

 \\  \:  \: { \implies \bold { \frac{ \sqrt{3}  - 1}{ \sqrt{3} + 1 }  \times  \frac{ \sqrt{3}  - 1}{ \sqrt{3}  - 1}  = a + b \sqrt{3} }} \\

 \\   \:  \: { \implies \bold { \frac{ {( \sqrt{3} - 1) }^{2} }{ {( \sqrt{3} )}^{2} -  {(1)}^{2}  } = a + b \sqrt{3} }} \\

 \\   \:  \: { \implies \bold { \frac{3  + 1 - 2 \sqrt{3} }{3 - 1}  = a + b \sqrt{3} }} \\

 \\   \:  \: { \implies \bold { \frac{4 - 2 \sqrt{3} }{2}  = a + b \sqrt{3} }} \\

 \\   \:  \: { \implies \bold { 2 -  \sqrt{3}  = a + b \sqrt{3} }} \\

• Now compare –

=> a = 2 and b = -1

• Now we have to find –

=> a² + b² = (2)² + (-1)²

 \: \: \: \: \: \: \: \: \: \: \:  \: \: \: \: \: \: \: \: \: \:= 4 + 1 = 5

Similar questions