Math, asked by xax, 1 year ago

✓3-1/✓3+1 rationalise the denominator​

Answers

Answered by venky2404
3

ANSWER :

Rationalizing the denominator :

 \frac{ \sqrt{3 + 1} }{ \sqrt{3 - 1} }  =   \frac{ \sqrt{3 + 1} }{ \sqrt{3 - 1} }  \times  \frac{ \sqrt{3 + 1} }{ \sqrt{3 + 1} }

 =  >  \frac{( \sqrt{3 + 1})( \sqrt{3 + 1}) }{ \sqrt{3 - 1} \times  \sqrt{3 + 1}  }

 =  >    \frac{ { (\sqrt{3 + 1}) }^{2} }{ ({ \sqrt{3}) }^{2} -  {1}^{2}  }  =  \frac{3 + 1 + 2 \sqrt{3} }{3 - 1}

 =  >  \frac{4 + 2 \sqrt{3} }{2}  = 2 +  \sqrt{3}

Therefore, 2+√3 is the answer

Hope this helps you

Answered by devindersaroha43
0

Answer:

Step-by-step explanation:

We need to rationalize the givenequation

To rationalize we will multiply and divide the denominator by √3+1

(√3+1)√3+1)/(√3-1)(√3+1)

Denominator can be simplified using the identity (a2-b2)=(a-b)(a+b)

And the equation becomes

=(√3+1)2/(√3)2-(1)2

=(4+2√3)/2

=2+√3

Similar questions