Math, asked by sanjugupta71996, 11 months ago

3+1/√3 add 1/3+√3 add 1/3-√3

Answers

Answered by ITzBrainlyGuy
4

Answer:

{ \sf{ \frac{3 + 1}{\sqrt{3} }  +  \frac{1}{3 +  \sqrt{3} }  +  \frac{1}{3 -  \sqrt{3} } }}

{ \sf{ =  \frac{4}{ \sqrt{3} }  +  \frac{(3 -  \sqrt{3}) + (3 +  \sqrt{3} ) }{(3 -  \sqrt{3} )(3 +  \sqrt{3}) } }}

Using

(a + b)(a - b) = a² - b²

{ \sf{ =  \frac{4}{ \sqrt{3} }  +  \frac{6}{ {3}^{2}   -  { \sqrt{3} }^{2} } }}

{ \sf{ =  \frac{4}{ \sqrt{3} }  +  \frac{6}{9 -0 } }}

 { \sf{=  \frac{4}{ \sqrt{3} }  +  \frac{ \cancel6}{ \cancel9} }}

{ \sf{ =  \frac{4}{ \sqrt{3} }  +  \frac{2}{3} }}

  = \frac{12 + 2}{3 \sqrt{3} }

 =  \frac{14}{3 \sqrt{3} }

So,

{ \bf{ \frac{3 + 1}{ \sqrt{3} }  +  \frac{1}{3 +  \sqrt{3} }  +  \frac{1}{3 -  \sqrt{3} }   \to \frac{14}{3 \sqrt{3} } }}

More information:

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

(a + b)(a - b) = a² - b²

(a + b)² - (a - b)² = 4ab

(a + b)² + (a - b)² = 2(a² + b²)

Concepts used:

→ Surds

→ Rationalization

Similar questions