3.1
State and prove Varignon's theorem.
Answers
it is okay
Okay
bokau
3.1
State and prove Varignon's theorem.
Answer:
Varignon's Theorem: Moment of a force about any point is equal to the sum of the moments of the components of that force about the same point. which says that the moment of R about O equals the sum of the moments about O of its components P and Q
Explanation:
Consider a set of {\displaystyle N}N force vectors {\displaystyle \mathbf {f} _{1},\mathbf {f} _{2},...,\mathbf {f} _{N}}{\displaystyle \mathbf {f} _{1},\mathbf {f} _{2},...,\mathbf {f} _{N}} that concur at a point {\displaystyle \mathbf {O} }{\displaystyle \mathbf {O} } in space. Their resultant is:
{\displaystyle \mathbf {F} =\sum _{i=1}^{N}\mathbf {f} _{i}}
The torque of each vector with respect to some other point {\displaystyle \mathbf {O} _{1}}{\displaystyle \mathbf {O} _{1}} is
{\displaystyle \mathbf {\mathrm {T} } _{O_{1}}^{\mathbf {f} _{i}}=(\mathbf {O} -\mathbf {O} _{1})\times \mathbf {f} _{i}}{\displaystyle \mathbf {\mathrm {T} } _{O_{1}}^{\mathbf {f} _{i}}=(\mathbf {O} -\mathbf {O} _{1})\times \mathbf {f} _{i}}.
Adding up the torques and pulling out the common factor {\displaystyle (\mathbf {O} -\mathbf {O_{1}} )}{\displaystyle (\mathbf {O} -\mathbf {O_{1}} )}, one sees that the result may be expressed solely in terms of {\displaystyle \mathbf {F} }\mathbf {F} , and is in fact the torque of {\displaystyle \mathbf {F} }\mathbf {F} with respect to the point {\displaystyle \mathbf {O} _{1}}{\displaystyle \mathbf {O} _{1}}:
{\displaystyle \sum _{i=1}^{N}\mathbf {\mathrm {T} } _{O_{1}}^{\mathbf {f} _{i}}=(\mathbf {O} -\mathbf {O} _{1})\times \left(\sum _{i=1}^{N}\mathbf {f} _{i}\right)=(\mathbf {O} -\mathbf {O} _{1})\times \mathbf {F} =\mathbf {\mathrm {T} } _{O_{1}}^{\mathbf {F} }}{\displaystyle \sum _{i=1}^{N}\mathbf {\mathrm {T} } _{O_{1}}^{\mathbf {f} _{i}}=(\mathbf {O} -\mathbf {O} _{1})\times \left(\sum _{i=1}^{N}\mathbf {f} _{i}\right)=(\mathbf {O} -\mathbf {O} _{1})\times \mathbf {F} =\mathbf {\mathrm {T} } _{O_{1}}^{\mathbf {F} }}.
Proving the theorem, i.e. that the sum of torques about {\displaystyle \mathbf {O} _{1}}{\displaystyle \mathbf {O} _{1}} is the same as the torque of the sum of the forces about the same point.