(3) 10
(1) 200
(3) 1090
(2) 99
(4) 933
The value of (997) according to binomial theorem is
(997)power 1/3 the answer is 9.65 how can anyone plz tell me
Answers
Answered by
2
Answer:
10 is the answer hope you understood
Answered by
0
Answer: The value of (997)^{\frac{1}{3}}(997)31 is 10.009910.0099
Explanation:
Given that,
(997)^{\dfrac{1}{3}}=(1000-3)^{\frac{1}{3}}(997)31=(1000−3)31
(1000-3)^{\dfrac{1}{3}}= (10(1-0.003)^{\frac{1}{3}})(1000−3)31=(10(1−0.003)31)
(10(1-0.003)^{\dfrac{1}{3}})= 1+\dfrac{1}{3}\times0.003+\dfrac{\frac{1}{3}(\frac{1}{3}-1)}{2}\times(0.003)^{2}......(10(1−0.003)31)=1+31×0.003+231(31−1)×(0.003)2......
(10(1-0.003)^{\frac{1}{3}})= 10.0099(10(1−0.003)31)=10.0099
(997)^{\frac{1}{3}}= 10.0099(997)31=10.0099
Hence, The value of (997)^{\frac{1}{3}}(997)31 is 10.009910.0099 .
Hope you understand!!
Similar questions