(-3/11)^x+5/(-3/11)^-2x+3 = (-3/11)^2x-5x[(-3/11)^-2]^(x+4) find the value of x.
Answers
Answered by
1
Answer:
mark me as brainlist
Step-by-step explanation:
Consider the given equation is
(-\dfrac{3}{11})^{x+5}\div (-\dfrac{3}{11})^{-2x+3}=(-\dfrac{3}{11})^{2x-5}\times (-\dfrac{3}{11})^{-2x-8}(−113)x+5÷(−113)−2x+3=(−113)2x−5×(−113)−2x−8
Using properties of exponent we get
(-\dfrac{3}{11})^{x+5-(-2x+3)}=(-\dfrac{3}{11})^{2x-5+(-2x-8)}(−113)x+5−(−2x+3)=(−113)2x−5+(−2x−8)
(-\dfrac{3}{11})^{3x+2}=(-\dfrac{3}{11})^{-13}(−113)3x+2=(−113)−13
On comparing both sides we get
3x+2=-133x+2=−13
3x=-13-23x=−13−2
3x=-153x=−15
Divide both sides by 5.
x=-5x=−5
Therefore, the value of x is -5.
#Learn more
(49)^3/2-(49)^5/2/49
Similar questions