Math, asked by rajvipanchal150503, 4 months ago

(-3/11)^x+5/(-3/11)^-2x+3 = (-3/11)^2x-5x[(-3/11)^-2]^(x+4) find the value of x.​

Answers

Answered by hiteshrane28
1

Answer:

mark me as brainlist

Step-by-step explanation:

Consider the given equation is

(-\dfrac{3}{11})^{x+5}\div (-\dfrac{3}{11})^{-2x+3}=(-\dfrac{3}{11})^{2x-5}\times (-\dfrac{3}{11})^{-2x-8}(−113)x+5÷(−113)−2x+3=(−113)2x−5×(−113)−2x−8

Using properties of exponent we get

(-\dfrac{3}{11})^{x+5-(-2x+3)}=(-\dfrac{3}{11})^{2x-5+(-2x-8)}(−113)x+5−(−2x+3)=(−113)2x−5+(−2x−8)

(-\dfrac{3}{11})^{3x+2}=(-\dfrac{3}{11})^{-13}(−113)3x+2=(−113)−13

On comparing both sides we get

3x+2=-133x+2=−13

3x=-13-23x=−13−2

3x=-153x=−15

Divide both sides by 5.

x=-5x=−5

Therefore, the value of x is -5.

#Learn more

(49)^3/2-(49)^5/2/49

Similar questions