Math, asked by anjali3429, 11 months ago

√3(√12+ √27-√48) plz ans ​

Answers

Answered by ayushpanwar6724
1

 \sqrt{3}  \times (2 \sqrt{3 }  + 3 \sqrt{3}  - 4\sqrt{3} ) \\    \sqrt{3}  \times (5 \sqrt{3} - 4 \sqrt{3}  ) \\  \sqrt{3}  \times   \sqrt{3}  = 1

Answered by AbhijithPrakash
6

Answer:

\sqrt{3}\left(\sqrt{12}+\sqrt{27}-\sqrt{48}\right)=3

Step-by-step explanation:

\sqrt{3}\left(\sqrt{12}+\sqrt{27}-\sqrt{48}\right)

\sqrt{12}

\mathrm{Prime\:factorization\:of\:}12:\quad 2^2\cdot \:3

=\sqrt{2^2\cdot \:3}

\gray{\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b}}

=\sqrt{3}\sqrt{2^2}

\gray{\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a^n}=a}

\gray{\sqrt{2^2}=2}

=2\sqrt{3}

\sqrt{27}

\mathrm{Prime\:factorization\:of\:}27:\quad 3^3

=\sqrt{3^3}

\gray{\mathrm{Apply\:exponent\:rule}:\quad \:a^{b+c}=a^b\cdot \:a^c}

=\sqrt{3^2\cdot \:3}

\gray{\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b}}

=\sqrt{3}\sqrt{3^2}

\gray{\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a^n}=a}

\gray{\sqrt{3^2}=3}

=3\sqrt{3}

\sqrt{48}

\mathrm{Prime\:factorization\:of\:}48:\quad 2^4\cdot \:3

=\sqrt{2^4\cdot \:3}

\gray{\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b}}

=\sqrt{3}\sqrt{2^4}

\gray{\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a^m}=a^{\dfrac{m}{n}}}

\gray{\sqrt{2^4}=2^{\dfrac{4}{2}}=2^2}

=2^2\sqrt{3}

\gray{\mathrm{Refine}}

=4\sqrt{3}

=\sqrt{3}\left(2\sqrt{3}+3\sqrt{3}-4\sqrt{3}\right)

\gray{\mathrm{Add\:similar\:elements:}\:2\sqrt{3}+3\sqrt{3}-4\sqrt{3}=\sqrt{3}}

=\sqrt{3}\sqrt{3}

\gray{\mathrm{Apply\:radical\:rule}:\quad \sqrt{a}\sqrt{a}=a}

\gray{\sqrt{3}\sqrt{3}=3}

=3

Similar questions