Math, asked by punitkhudia, 1 year ago

3+2√2/3-√2. rationalise the denominator

Answers

Answered by DaIncredible
11
Identity used :

(a + b)(a - b) =  {a}^{2}  -  {b}^{2}

 \frac{3 + 2 \sqrt{2} }{3 -  \sqrt{2} }  \\

On rationalizing the denominator we get,

 =  \frac{3 + 2 \sqrt{2} }{3 -  \sqrt{2} }  \times  \frac{3 +  \sqrt{2} }{3 +  \sqrt{2} }  \\  \\  =  \frac{3(3 +  \sqrt{2} ) + 2 \sqrt{2} (3 +  \sqrt{2} )}{ {(3)}^{2}  -  {( \sqrt{2} )}^{2} }  \\  \\  =  \frac{ 9 + 3 \sqrt{2}  + 6 \sqrt{2}  + 4}{9 - 2}  \\  \\  =  \frac{13 + 9 \sqrt{2} }{7}

Answered by Anonymous
5
\textbf{Answer:}

 \frac{3 + 2 \sqrt{2} }{3 -  \sqrt{2} }

 =  \frac{3 + 2 \sqrt{2} }{3 -  \sqrt{2} }  \times  \frac{3 +  \sqrt{2} }{3 +  \sqrt{2} }

Now, we use the identity,

(a + b)(a - b) = a² - b²

 \frac{3(3 +  \sqrt{2}) + 2 \sqrt{2} (3 +   \sqrt{2}) }{(3) {}^{2} -  (\sqrt{2} ){}^{2}    }


 =  \frac{9 + 3 \sqrt{2} + 6 \sqrt{2} + 4  }{9 - 2}

  = \frac{13 + 9 \sqrt{2} }{7}
__________

\boxed{Hope\:it\:helps\:you!}
__________
✪ Be Brainly ✪
Similar questions