Math, asked by callpoonam77, 1 year ago

√ 3+√2/√3-√2+√3-√2/√3+√2

Answers

Answered by DhanyaDA
4
Hi friend!!

 \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  +  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3} +  \sqrt{2}  }


=(√3+√2)²+(√3-√2)²/(3-2)

=(3+2+2√6+3+2-2√6)/1

=10

I hope this will help you ;)

DaIncredible: great ma'am ^_^
DhanyaDA: Thanks!
DaIncredible: ☺☺
Answered by DaIncredible
2
Heya there !!!
Here is the answer you were looking for:

Identities used :

 {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy \\  {(x - y)}^{2}  =  {x}^{2}   + {y}^{2}  - 2xy \\ (x + y)(x - y) =  {x}^{2}  -  {y}^{2}

 \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  +  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \\  \\  =  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }  \times  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }  +  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }  \times  \frac{ \sqrt{3}  -  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }  \\  \\  =  \frac{ {( \sqrt{3} )}^{2}  +  {( \sqrt{2}) }^{2}  + 2( \sqrt{3})( \sqrt{2} ) }{ {( \sqrt{3} )}^{2} -  {( \sqrt{2}) }^{2}  }  +  \frac{ {( \sqrt{3} )}^{2} +  {( \sqrt{2} )}^{2}   - 2( \sqrt{3} )( \sqrt{2}) }{ {( \sqrt{3}) }^{2}  -  {( \sqrt{2}) }^{2} }  \\  \\  =  \frac{3 + 2 + 2 \sqrt{6} }{3 - 2}  +  \frac{3 + 2 - 2 \sqrt{6} }{3 - 2}  \\  \\  = 5 + 2 \sqrt{6}  + 5 - 2 \sqrt{6}  \\  \\  = 5 + 5 \\  \\  = 10

Hope this helps!!!

If you have any doubt regarding to my answer, please ask in the comment section or inbox me ^_^

@Mahak24

Thanks...
☺☺
Similar questions