Math, asked by anirudhst123, 9 months ago

3 + √2 / 3 - √2 = a+b √2 . Find a and b

Answers

Answered by TheValkyrie
3

Answer:

\bigstar{\bold{a=\dfrac{11}{7} }}

\bigstar{\bold{b=\dfrac{6}{7} }}

Step-by-step explanation:

\Large{\underline{\underline{\bf{Given:}}}}

  • \dfrac{3+\sqrt{2} }{3-\sqrt{2} } = a+b\sqrt{2}

\Large{\underline{\underline{\bf{To\:Find:}}}}

  • a and b

\Large{\underline{\underline{\bf{Solution:}}}}

→ Rationalise the denominator by taking the conjugate of 3 - √2 which is equal to 3 + √2

→ Multiplying by 3 + √2 on both numerator and denominator

\dfrac{(3+\sqrt{2})\times (3 +\sqrt{2} ) }{(3-\sqrt{2})\times (3+\sqrt{2} ) }

→ By using the identities

(a + b)² = a² + 2ab + b²

(a + b) (a -b) = a² - b²

\dfrac{3^{2}+2\times 3\times \sqrt{2} +(\sqrt{2} )^{2}  }{3^{2}-(\sqrt{2}) ^{2}  }

\dfrac{9+2+6\sqrt{2} }{9-2}

\dfrac{11+6\sqrt{2} }{7}

→ Splitting it we get,

\dfrac{11}{7} +\dfrac{6\sqrt{2} }{7}

→ Equating it with a + b√2

a = 11/7

b = 6/7

\boxed{\bold{a=\dfrac{11}{7}}}     ,     \boxed{\bold{b=\dfrac{6}{7}}}

\Large{\underline{\underline{\bf{Notes:}}}}

→ (a + b)² = a² + 2ab + b²

→ (a - b)² = a² - 2ab + b²

→ a² - b² = (a +b) × (a - b)

Similar questions