Math, asked by vandan74, 7 months ago

3+√2\3-√2 =a+b√3. say me plzzzzz​

Answers

Answered by Isighting12
1

Answer:

\frac{3+\sqrt{2}}{3-\sqrt{2}}=a+b\sqrt{2}\\\\\frac{(3+\sqrt{2})(3+\sqrt{2})}{(3-\sqrt{2})(3+\sqrt{2})}=a+b\sqrt{2}\\\\\frac{(3)^{2}+(\sqrt{2})^{2}+2(3)(\sqrt{2})}{(3)^{2}-(\sqrt{2}^{2})}=a+b\sqrt{2}\\\\\frac{9+2+6\sqrt{2}}{9-2}=a+b\sqrt{2}\\\\\frac{11+6\sqrt{2}}{7}=a+b\sqrt{2}\\\\\frac{11}{7}+\frac{6\sqrt{2}}{7}=a+b\sqrt{2}

therefore,

a=\frac{11}{7}

b\sqrt{2}=\frac{6\sqrt{2}}{7}\\\\b=\frac{6}{7}

Answered by rajeevr06
1

Answer:

 \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} }  =  \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} }  \times  \frac{3 +  \sqrt{2} }{3 +  \sqrt{2} }  =  \frac{(3 +  \sqrt{2}) {}^{2}  }{9 - 2}  =  \frac{9 + 2 + 6 \sqrt{2} }{7}  =  \frac{11}{7}  +  \frac{6 \sqrt{2} }{7}

So,

a =  \frac{11}{7}  \:  \: and \:  \: b =  \frac{6}{7}

Similar questions