Math, asked by Anonymous, 7 months ago

√3+√2÷√3-√2= a + b √6, then (a, b) =

a) (5,2)
b) (2,5)
c) (3, 2)
d) (1,5)​

Answers

Answered by Anonymous
3

 \underline{ \rm \red{solution}}

 :  \implies \rm \:  \dfrac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}   - \sqrt{2} }  = a + b \sqrt{6}

  \underline{\rm \:   \green{now \:  \: \: rationalization  \:  \: the \: denominator}}

 :  \implies \rm \:  \dfrac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}   }  \times  \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }

 \underline{ \rm \blue{using \: this \: identities}}

 \rm \:  \to \: (a + b)(a - b) = ( {a}^{2}  +  {b}^{2} )

 \rm \to \: (a + b)^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

 \underline{  \orange{\rm now \: take \: }}

:  \implies \rm \:  \dfrac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}   }  \times  \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }

 \rm :  \implies \:  \dfrac{( \sqrt{3} +  \sqrt{2} )^{2}  }{( \sqrt{3} ) {}^{2} - ( \sqrt{2})^{2}   }

 \rm :  \implies \:  \dfrac{( \sqrt{3}) {}^{2}  + ( \sqrt{2}) {}^{2} + 2 \times  \sqrt{3}    \times  \sqrt{2}  }{3 - 2}

 \rm :  \implies \dfrac{3 + 2 + 2 \sqrt{6} }{1}

 :  \implies \: 5 + 2 \sqrt{6}

  \red{\rm \:  answer}

 \rm \to \: a = 5 \:  \: and \: b \:  = 2

Answered by rrohithkushal
0

Answer:

answer

a=5andb=2

please mark me as brainlist

Similar questions