Math, asked by JinishaRane, 1 month ago

✓3-✓2÷✓3-✓2 rationalise the denominator​

Answers

Answered by Dinosaurs1842
23

Question :-

\sf Rationalize\:the\: denominator\:of\: \dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}

Answer :-

In order to rationalize the denominator we have to multiply the fraction with the denominator's inverse such that :

(a-b)(a+b) = a² - b² is formed.

The denominator here = √3 - √2

Inverse = √3 + √2

\sf Multiplying\: the \:number\: with \: \dfrac{\sqrt{3} + \sqrt{2}}{\sqrt{3} + \sqrt{2}}

 \implies \sf  \dfrac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  \times  \dfrac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }

 \implies \sf  \dfrac{( \sqrt{3} -  \sqrt{2})( \sqrt{3}  +   \sqrt{2} )   }{( \sqrt{3 } -  \sqrt{2} )( \sqrt{3}   +  \sqrt{2}) }

As we know that (a-b)(a+b) = a² - b², applying the identity,

 \implies \sf  \dfrac{( \sqrt{3})^{2}  -  {( \sqrt{2} )}^{2}  }{( \sqrt{3})^{2}  -  {( \sqrt{2} )}^{2}}

 \implies \sf  \dfrac{3 - 2}{3 - 2}

 \implies \sf  \dfrac{1}{1}

 \implies \sf 1

\sf Therefore\: the\: rarionlized\: form\: of\: \dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}\: is\: 1

Identities :

  • (a + b)² = a² + 2ab + b²
  • (a - b)² = a² - 2ab + b²
  • a² - b² = (a - b)(a + b)
  • (x + a)(x + b) = x² + x(a + b) + ab
  • (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
  • (a + b)³ = a³ + b³ + 3ab(a + b)
  • (a - b)³ = a³ - b³ - 3ab(a - b)
  • a³ + b³ = (a + b)(a² - ab + b²)
  • a³ - b³ = (a - b)(a² + ab + b²)

Answered by RealSweetie
41

Step-by-step explanation:

√3-√2/√3-√2

=1/1

hope it'll help you please make it brainliest answer

Similar questions