Math, asked by sandhya3737, 11 months ago

√3+√2/√3-√2 rationalise Tue denominator with steps ​

Answers

Answered by KUNDANGENIUS
4

Step-by-step explanation:

 \sqrt{3}  +  \sqrt{2}   \div  \sqrt{3 }  -  \sqrt{2}

multiple by

 \sqrt{3}  +  \sqrt{2}

so we get

 \sqrt{3}  +  \sqrt{2}  \div  \sqrt{3}  -  \sqrt{2}  \times  \ \sqrt{3}  +  \sqrt{2}  \div  \sqrt{3}  +  \sqrt{2}

which is equal to

Attachments:
Answered by nickcolldagar20
3

Answer:

5+2√6

Step-by-step explanation:

 \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2} }  \times  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2}  } =  \frac{( \sqrt{3} +  \sqrt{2})^{2}   }{ \sqrt{3}^{2}  -  \sqrt{2}^{2}  }

Multiply both denominator and Numerator by √3 +√2

Now open the identity: (a + b) ² in the numerator and (a²-b²) in the denominator

 \frac{ \sqrt{3}^{2}   +  \sqrt{2 }^{2}  + (2 \times  \sqrt{3} \times  \sqrt{2})  }{3 - 2}  =  \frac{3 + 2 + 2 \sqrt{6} }{1}  = 5  + 2\sqrt{6}

Similar questions