3√2/3+√6-4√3/√6+√2+√6/√2+√3
Answers
Answered by
2
this is ur answer of ur question
Attachments:
Answered by
3
(3√2/3) +(√6-4√3/√6 )+ (√2+√6/√2+√3)
= (√2) + (√2×√3-√2×√2×√3/√2×√3) + (√2+√6/√2+√3)
= (√2 )+ (1-√2) + (√2+√6/√2+√3)
take LCM of 1,1,√2+√3
= √2×√2+√3 + 1-√2×√2+√3 +√2+√6/√2+√3
= √4+√6 + 1(√2+√3)-√2(√2+3) + √2+√6. /√2+√3
= 2+√6 + √2+√3-√4-√6 + √2+√6 / √2+√3
= 2+√6. + √2+√3-2-√6+√2. +√6 / √2+√3
= 2√2+√3+√6 / √2+√3
= (√2) + (√2×√3-√2×√2×√3/√2×√3) + (√2+√6/√2+√3)
= (√2 )+ (1-√2) + (√2+√6/√2+√3)
take LCM of 1,1,√2+√3
= √2×√2+√3 + 1-√2×√2+√3 +√2+√6/√2+√3
= √4+√6 + 1(√2+√3)-√2(√2+3) + √2+√6. /√2+√3
= 2+√6 + √2+√3-√4-√6 + √2+√6 / √2+√3
= 2+√6. + √2+√3-2-√6+√2. +√6 / √2+√3
= 2√2+√3+√6 / √2+√3
Similar questions