Math, asked by hsbdndnjd, 9 months ago

3.2 Find the length of the diagonal of a rectangle with length 20 m and breadth 15 m.​

Answers

Answered by Anonymous
7

GIVEN:-

  • \rm{Length\:of\: Rectangle = 20m}

  • \rm{Breadth\:of\: Rectangle = 15m}.

TO FIND:-

  • The Length of the Diagonal.

CONSTRUCTION:-

  • Join D to B. i.e Diagonal.

Now,

\implies\rm{ CD = 15m}

\implies\rm{ BC = 20m}

\implies\rm{ BD = ?}.

Using Pythogoras Theorem because in rectangle the angles forms 90°.

\implies\rm{ (BC)^2 + (CD)^2 = (BD)^2 }

\implies\rm{ (20)^2 + (15)^2 = (BD)^2 }

\implies\rm{ 400 + 225 = (BD)^2 }

\implies\tm{ 625 = (BD)^2 }

\implies\rm{\sqrt{BD} = \sqrt{625}}

\implies\rm{ BD = 25m}.

Hence, The Diagonal of Rectangle is 25m

Attachments:
Answered by Truebrainlian9899
189

 \large \:  \red{ \underline{ \underline{ \green{  \rm given : }}}}

  • Length = 20m

  • Breadth = 15m

 \large \:  \pink{ \underline{ \underline{ \orange{  \rm to \:  \: find : }}}}

  • length of diagonal

\rightarrow Note : We can cut a rectangle into triangle.

\therefore It is a right angled triangle.

 \large \:  \purple{ \underline{ \underline{ \blue{  \rm solution : }}}}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Pythagoras Theorem:-

 \large \red{ \boxed{ \boxed{ \green{ \rm  {h}^{2} = p {}^{2}   +  {b}^{2} }}}}

Here,

  • H = diagonal (hypotenuse)

  • P = length = 20m

  • B = breadth ( base ) = 15m

\implies H² = 20² + 15²

\implies H² = 400 + 225

\implies H² = 625

 \implies  \large\rm h {}^{}  =  \sqrt{625}

 \large \pink{ \boxed{ \boxed{ \purple{ \therefore  \: diagonal = 25m}}}}

Attachments:
Similar questions