Math, asked by aaravparikh2006, 10 months ago

3+ 2 root 2 / 3 minus root 2 is equal to a + b root 2 where A and B are rational number find the values of a and b​

Answers

Answered by Delta13
19

Given:

 \frac{3 + \sqrt{2} }{3 -  \sqrt{2} }  = a + b \sqrt{2}  \\

To find:

The values of a and b

Solution:

Rationalising the denominator

  =  > \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} }  \times  \frac{3 +  \sqrt{2} }{3 +  \sqrt{2} }  \\  \\  =  \frac{(3 +  \sqrt{2}) {}^{2}  }{(3) {}^{2} - ( \sqrt{2} ) {}^{2}  }

We know that

(a-b)(a+b) = (a²-b²)

and

(a+b)² = a² +b² +2ab

 =  \frac{(3) {}^{2} + ( \sqrt{2}  ) {}^{2} + 2 \times 3 \times ( \sqrt{2})  }{9 - 2}  \\  \\  =   \frac{9 + 2 + 6 \sqrt{2} }{7}  \\  \\  = \frac{11 + 6 \sqrt{2} }{7}

Also, we have

 \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} }  = a + b \sqrt{2}  \\   \\  \ \:  Therefore\\  \\   \large  \implies  \frac{11 + 6 \sqrt{2} }{7}  = a + b \sqrt{2}

Now comparing them

 \implies \:  \frac{11}{7}  +  \frac{6 }{7} \sqrt{2}  = a + b \sqrt{2}  \\  \\ On \: comparing \\  \\  \implies \: a =  \frac{11}{7}  \\  \\  \implies \: b =  \frac{6}{7}

Hence, the value of a = 11/7 and b = 6/7.

Answered by shanthirenganathan93
1

Answer:

conjucate of this is 3+rooot2/3+rooot 2

3+root2 the whole square/3_root 2 3+root 2

as per formula

a+b the whole square/a square _bsquare formula

we get the answer as 11+6 root 2

Step-by-step explanation:

  1. hope it helps u❤
Similar questions