(3-√2)^x+(3+√2)^=6 how to solve this answer is 1
Answers
Answered by
1
Answer:
1
Step-by-step explanation:
⇒ 3 + √2
⇒ ( 3 + √2 )( 3 - √2 ) / ( 3 - √2 )
Using ( a + b )( a - b ) = a^2 - b^2
⇒ [ 3^2 - ( √2 )^2 ] / ( 3 - √2 )
⇒ [ 9 - 2 ] / ( 3 - √2 )
⇒ 7 / ( 3 - √2 )
in the question, replacing ( 3 + √2 )^x by [ 7 / ( 3 - √2 ) ]^x
⇒ ( 3 - √2 )^x + [ 7 / ( 3 - √2 ) ]^x = 6
Let ( 3 - √2 )^x = a
⇒ a + 7/a = 6
⇒ ( a^2 + 7 ) / a = 6
⇒ a^2 + 7 = 6a
⇒ a^2 - 6a + 7 = 0
Using quadratic eq.
⇒ a = [ 6 ± √( 36 - 28 ) / 2
⇒ a = [ 6 ± √8 ] / 2
⇒ a = [ 6 ± 2√2 ] / 2
⇒ a = 2( 3 ± 2√2 ) / 2
⇒ a = 3 ± √2
taking -ve value Hence,
⇒ a = ( 3 - √2 )^x = 3 - √2
⇒ ( 3 - √2 )^x = ( 3 - √2 )^1
Comparing
⇒ x = 1
Similar questions
English,
5 months ago
Biology,
5 months ago
Political Science,
5 months ago
Math,
10 months ago
Social Sciences,
10 months ago
Math,
1 year ago
Math,
1 year ago