Math, asked by raki34092, 4 months ago

(3‐2i) (2+3i)/ (1+2i) (2‐i)​

Answers

Answered by laxmanlaxman72190
2

Answer:

6 + 9i - 4i - 6i^2 / 2 -i + 4i - 2i^2.,, 6 + 5i +6 / 2 -i +3.,, 12 + 5i / 5- i

Answered by Anonymous
16

Step-by-step explanation:

TO FIND,

  • Found the conjugate in given Equation

 \blue{ \underline{QUESTION \:  :  - }}

 \huge{ \bold{  \frac{(3 - 2i) \: 2 + 3i}{(1 + 2i) \: (2 - i)}}}

 \star{ \pink{  \underline{ \underline{Solution \:  :  - }}}}

 \sf{  =  \frac{6 + 9i - 4i -  {6i}^{2} }{2 - i + 4i -  {2i}^{2} }}

 \sf{ =  \frac{6 + 9i - 4i - 6 \times ( - 1)}{2 - i + 4i - 2 \times ( - 1)}}

 \sf{  = \frac{ 6 + 9i - 4i + 6}{2 - i + 4i + 2}}

 \sf{ =  \frac{12 + 5i}{4 + 3i}  \times  \frac{4 - 3i}{4 - 3i}}

 \sf{  = \frac{48 - 36i + 20i -  {15i}^{2} }{ {4}^{2}  -  ({3i})^{2} }}

 \sf{ \ =  \frac{48 - 36i + 20i -  {15i}^{2} }{16 - 3 \times ( - 1)}}

 \sf{ =  \frac{48 - 36i + 20i - 15 \times ( - 1)}{16 + 9}}

 \sf{ \ =  \frac{48 - 16i + 15}{25}}

 \sf{ =  \frac{63 - 16i}{25}}

 \boxed{  \huge{ \purple{ \sf{a + ib}}}}

Conjugate:-

 \sf{ =  \frac{63}{25}  -  \frac{16}{25}i}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

INFORMATION ABOUT IOTA

  • i = -1

  • i²= -1

  • i³ = -i

  • i = 1

COMPLEX NUMBERS Formula

  • Z = a +ib

a = REAL PART

b = IMAGINARY PART

_________________________

Similar questions