Math, asked by sid5868, 1 year ago

(3+2i/2-5i)+(3-2i/2+5i) write in a+ib form​

Attachments:

Answers

Answered by Anonymous
17

Given expression,

 \sf{ \frac{3 + 2i}{2 - 5i}  +  \frac{3 - 2i}{2 + 5i} } \\

To find the general form of the given expression

Now,

 \sf{ \dfrac{3 + 2i}{2 - 5i} +  \frac{3 - 2i}{2 + 5i}} \\  \\  \implies \:  \sf{ \dfrac{(3 + 2i)(2 + 5i) + (3 - 2i)(2 - 5i)}{(2 + 5i)(2 - 5i)} } \\  \\  \implies \:  \sf{ \dfrac{(6 + 19i + 10i {}^{2} )+ (6 - 19i + 10i {}^{2})  }{2 {}^{2} - (5i ){}^{2}  } } \\  \\  \implies \:   \sf{\dfrac{12 +20i {}^{2}  }{2 - 25i {}^{2} }}  \\  \\  \sf{we \: know \: that \: i {}^{2}  =  - 1} \\  \\  \implies \:  \sf{ \dfrac{12 - 20}{2 + 25} } \\  \\  \implies \:  \sf{- \dfrac{ 8}{27} } \\  \\  \implies \:   \underline{\boxed{ \sf{- \dfrac{ 8}{27}  + 0i}}}

Here,

a= -8/27 and b=0

Similar questions