Math, asked by hannarodilex, 11 months ago

3^2x × 3^2x/3^2= 4√3^20 (genius, here u go)​


hannarodilex: it means that x is with the power
AbhijithPrakash: is that so??
hannarodilex: yeah
AbhijithPrakash: Wait then what about 3^2x/3^2??
AbhijithPrakash: Is the entire 2x/3^2 in power??
AbhijithPrakash: ??
hannarodilex: wait
hannarodilex: I'll the question again in pic form
AbhijithPrakash: ok
hannarodilex: i sent it

Answers

Answered by AbhijithPrakash
11

Answer:

\dfrac{3^{2x}\times \:3^{2x}}{3^2}=\sqrt[4]{3^{20}}\quad :\quad x=\dfrac{7}{4}\quad \left(\mathrm{Decimal}:\quad x=1.75\right)

Step-by-step explanation:

\dfrac{3^{2x}\times \:3^{2x}}{3^2}=\sqrt[4]{3^{20}}

\mathrm{Apply\:exponent\:rule}:\quad \dfrac{1}{a^b}=a^{-b}

\dfrac{1}{3^2}=3^{-2}

3^{2x}\times \:3^{2x}\times \:3^{-2}=\sqrt[4]{3^{20}}

\mathrm{Apply\:exponent\:rule}:\quad \:a^b\times \:a^c=a^{b+c}

3^{2x}\times \:3^{2x}=3^{2x+2x}

3^{2x+2x}\times \:3^{-2}=\sqrt[4]{3^{20}}

\mathrm{Divide\:both\:sides\:by\:}3^{-2}

\dfrac{3^{2x+2x}\times \:3^{-2}}{3^{-2}}=\dfrac{\sqrt[4]{3^{20}}}{3^{-2}}

Simplify;

3^{2x+2x}=\dfrac{\sqrt[4]{3^{20}}}{3^{-2}}

\mathrm{Simplify\:}\dfrac{\sqrt[4]{3^{20}}}{3^{-2}}:\quad 2187

3^{2x+2x}=2187

\mathrm{Convert\:}2187\mathrm{\:to\:base\:}3

2187=3^7

3^{2x+2x}=3^7

\mathrm{If\:}a^{f\left(x\right)}=a^{g\left(x\right)}\mathrm{,\:then\:}f\left(x\right)=g\left(x\right)

2x+2x=7

Simplify;

4x=7

\mathrm{Solve\:}\:4x=7:\quad x=\dfrac{7}{4}

\bold{x=\dfrac{7}{4}}

Attachments:

hannarodilex: yeah its correct now
Similar questions