3(2x – 3y) - 2(2x – 3y}
Answers
refer to the attachment
Answer:
ˢᵀᴱᴾ
1
:
ᴱqᵘᵃᵗⁱᵒⁿ ᵃᵗ ᵗʰᵉ ᵉⁿᵈ ᵒᶠ ˢᵗᵉᵖ 1
((2ˣ-(3•(ʸ2)))3)+((2ˣ-(3ʸ2))2)
ˢᵀᴱᴾ
2
:
ᴱqᵘᵃᵗⁱᵒⁿ ᵃᵗ ᵗʰᵉ ᵉⁿᵈ ᵒᶠ ˢᵗᵉᵖ
2
:
((2ˣ - (3ʸ2))3) + (2ˣ - 3ʸ2)2
ˢᵀᴱᴾ
3
:
ᴾᵘˡˡⁱⁿᵍ ᵒᵘᵗ ˡⁱᵏᵉ ᵗᵉʳᵐˢ
3.1 ᴾᵘˡˡ ᵒᵘᵗ (2ˣ-3ʸ2)2
ᴬᶠᵗᵉʳ ᵖᵘˡˡⁱⁿᵍ ᵒᵘᵗ, ʷᵉ ᵃʳᵉ ˡᵉᶠᵗ ʷⁱᵗʰ :
(2ˣ-3ʸ2)2 • ( (2ˣ-3ʸ2) - (-1) ))
ᵀʳʸⁱⁿᵍ ᵗᵒ ᶠᵃᶜᵗᵒʳ ᵃˢ ᵃ ᴰⁱᶠᶠᵉʳᵉⁿᶜᵉ ᵒᶠ ˢqᵘᵃʳᵉˢ:
3.2 ᶠᵃᶜᵗᵒʳⁱⁿᵍ: 2ˣ-3ʸ2
ᴾᵘᵗ ᵗʰᵉ ᵉˣᵖᵒⁿᵉⁿᵗ ᵃˢⁱᵈᵉ, ᵗʳʸ ᵗᵒ ᶠᵃᶜᵗᵒʳ 2ˣ-3ʸ2
ᵀʰᵉᵒʳʸ : ᴬ ᵈⁱᶠᶠᵉʳᵉⁿᶜᵉ ᵒᶠ ᵗʷᵒ ᵖᵉʳᶠᵉᶜᵗ ˢqᵘᵃʳᵉˢ, ᴬ2 - ᴮ2 ᶜᵃⁿ ᵇᵉ ᶠᵃᶜᵗᵒʳᵉᵈ ⁱⁿᵗᵒ (ᴬ+ᴮ) • (ᴬ-ᴮ)
ᴾʳᵒᵒᶠ : (ᴬ+ᴮ) • (ᴬ-ᴮ) =
ᴬ2 - ᴬᴮ + ᴮᴬ - ᴮ2 =
ᴬ2 - ᴬᴮ + ᴬᴮ - ᴮ2 =
ᴬ2 - ᴮ2
ᴺᵒᵗᵉ : ᴬᴮ = ᴮᴬ ⁱˢ ᵗʰᵉ ᶜᵒᵐᵐᵘᵗᵃᵗⁱᵛᵉ ᵖʳᵒᵖᵉʳᵗʸ ᵒᶠ ᵐᵘˡᵗⁱᵖˡⁱᶜᵃᵗⁱᵒⁿ.
ᴺᵒᵗᵉ : - ᴬᴮ + ᴬᴮ ᵉqᵘᵃˡˢ ᶻᵉʳᵒ ᵃⁿᵈ ⁱˢ ᵗʰᵉʳᵉᶠᵒʳᵉ ᵉˡⁱᵐⁱⁿᵃᵗᵉᵈ ᶠʳᵒᵐ ᵗʰᵉ ᵉˣᵖʳᵉˢˢⁱᵒⁿ.