Math, asked by Adyasha111, 1 year ago

3/(√3-√2) = a√3-b√2 . Find the values of a and b.

Answers

Answered by ShuchiRecites
2
Hello Mate!

 \frac{3}{ \sqrt{3} -  \sqrt{2}  }  = a \sqrt{3}  - b \sqrt{2}  \\  \frac{3}{ \sqrt{3} -  \sqrt{2}  }  \times  \frac{ \sqrt{3} +  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \\  =  \frac{3( \sqrt{3} +  \sqrt{2} ) }{3 - 2}  = 3 \sqrt{3}  + 3 \sqrt{2}  \\ 3 \sqrt{3}  + 3 \sqrt{2}  = a \sqrt{3}  - b \sqrt{2 }  \\ a = 3 \\  - b = 3 \: or \: b \:  =  - 3

Hope it helps☺!✌

ShuchiRecites: thanks for marking brainliest
Adyasha111: u r welcome
Answered by Robin0071
2
Solution:-


 \frac{3}{( \sqrt{3} -  \sqrt{2} ) }  = a \sqrt{3}  - b \sqrt{2}  \\  \frac{3}{( \sqrt{3}  -  \sqrt{2} )} \times  \frac{( \sqrt{3}   +  \sqrt{2}) }{( \sqrt{3}  +  \sqrt{2}) }   \\  \frac{3 \sqrt{3} +  3\sqrt{2}  }{3 - 2}  \\ 3 \sqrt{3}  - 3 \sqrt{2}  = a \sqrt{3}  - b \sqrt{2}  \\ a = 3 \\ b =  - 3 \\
Similar questions