Math, asked by tanishkayadav2030, 5 months ago

3
3. If sin A= 3/4
calculate cos A and tan A

Answers

Answered by nirudholi201
0
  1. cosA= underroot 7/4
  2. tanA=3/underroot 7

Step-by-step explanation:

sin^2A+cos^2A=1

(3/4)^2+cos^2A=1

9/16+cos^2A=1

cos^2A=1-9/16

cos^2A=16-9/16

cos^2A=7/16

cosA=under root 7/4

tanA=sinA/cosA

tanA=3/4/under root 7/4

tanA=3/under root 7

Answered by Anonymous
4

 \huge \sf Answer :

 \sf cosA = \dfrac{\sqrt{7}}{4}

 \sf tanA = \dfrac{3}{\sqrt{7}}

⠀ ⠀ ⠀⠀ ⠀

 \huge \sf Solution :

We know that,

 \sf sin \theta = \dfrac{Perpendicular}{Hypotenuse}

⠀ ⠀ ⠀⠀ ⠀

According to Statement,

 \sf sin \theta = \dfrac{3}{4}

 \sf \implies \dfrac{Perpendicular}{Hypotenuse} = \dfrac{3}{4}

∴ Perpendicular for θ = 3x

and the hypotenuse for θ = 4x

⠀ ⠀⠀ ⠀ ⠀⠀ ⠀

By Pythagoras' Theorem,

Hypotenuse² = Perpendicular² + Base²

 \sf⇒ AC² = AB² + BC²

 \sf⇒ (4x)² = (3x)² + BC²

 \sf⇒ 16x² = 9x² + BC²

 \sf⇒ 16x² - 9x² = BC²

 \sf⇒ 7x² = BC²

 \sf⇒ \sqrt{7x^{2}} = BC

 \sf⇒ BC = \sqrt{7}x

⠀ ⠀

Now, We have cosA and tanA will be,

 \sf cosA = \dfrac{Base}{Hypotenuse}

 \sf⇒ cosA = \dfrac{\sqrt{7}x}{4x}

 \sf⇒ cosA = \dfrac{\sqrt{7}}{4}

⠀ ⠀

 \sf tanA = \dfrac{Perpendicular}{Base}

 \sf⇒ tanA = \dfrac{3x}{\sqrt{7}x}

 \sf⇒ tanA = \dfrac{3}{\sqrt{7}}

Similar questions