Math, asked by arvindkumar7858084, 7 months ago

3.3.
Prove the √3 is an
imational.​

Answers

Answered by PalakThareja
1

Answer:

Hope this helps you please mark this as the brainliest answer and don't forget to follow.

Step-by-step explanation:

Let us assume to the contrary that √3 is a rational number.

It can be expressed in the form of p/q

where p and q are co-primes and q≠ 0.

⇒ √3 = p/q

⇒ 3 = p2/q2 (Squaring on both the sides)

⇒ 3q2 = p2………………………………..(1)

It means that 3 divides p2 and also 3 divides p because each factor should appear two times for the square to exist.

So we have p = 3r

where r is some integer.

⇒ p2 = 9r2………………………………..(2)

from equation (1) and (2)

⇒ 3q2 = 9r2

⇒ q2 = 3r2

Where q2 is multiply of 3 and also q is multiple of 3.

Then p, q have a common factor of 3. This runs contrary to their being co-primes. Consequently, p / q is not a rational number. This demonstrates that √3 is an irrational number.

Answered by anu261815
0

Answer:

hey hope it helps u..

Step-by-step explanation:

Let us assume that √3 is a rational number.

then, as we know a rational number should be in the form of p/q

where p and q are co- prime number.

So,

√3 = p/q { where p and q are co- prime}

√3q = p

Now, by squaring both the side

we get,

(√3q)² = p²

3q² = p² ........ ( i )

So,

if 3 is the factor of p²

then, 3 is also a factor of p ..... ( ii )

=> Let p = 3m { where m is any integer }

squaring both sides

p² = (3m)²

p² = 9m²

putting the value of p² in equation ( i )

3q² = p²

3q² = 9m²

q² = 3m²

So,

if 3 is factor of q²

then, 3 is also factor of q

Since

3 is factor of p & q both

So, our assumption that p & q are co- prime is wrong

hence,. √3 is an irrational number

Similar questions