Math, asked by ladallavarshini19, 9 months ago

3 + 32 + 33 + ... + 38 =?​

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{31+32+33+\;.\;.\;.\;.\;.+38}

\underline{\textbf{To find:}}

\textsf{Value of the sum}

\mathsf{31+32+33+\;.\;.\;.\;.\;.+38}

\underline{\textbf{Solution:}}

\underline{\textbf{Sum of first 'n' natural numbers:}}

\boxed{\mathsf{1+2+3+\;.\;.\;.\;.\;.\;.+n=\dfrac{n(n+1)}{2}}}

\mathsf{Consider,}

\mathsf{31+32+33+\;.\;.\;.\;.\;.+38}

\textsf{This can be written as,}

\mathsf{=1+2+3+\;.\;.\;.\;.+30+31+32+33+\;.\;.\;.\;.\;.+38-(1+2+3+\;.\;.\;.\;.+30)}

\mathsf{=(1+2+3+\;.\;.\;.\;.\;.\;.\;.+38)-(1+2+3+\;.\;.\;.\;.+30)}

\mathsf{=\dfrac{38(38+1)}{2}-\dfrac{30(30+1)}{2}}

\mathsf{=\dfrac{38{\times}39}{2}-\dfrac{30{\times}31}{2}}

\mathsf{=(19{\times}39)-(15{\times}31)}

\mathsf{=(19{\times}39)-(15{\times}31)}

\mathsf{=741-465}

\mathsf{=276}

\implies\boxed{\mathsf{31+32+33+\;.\;.\;.\;.\;.+38=278}}

Answered by NainaRamroop
0

Given:

3 + 32 + 33 + ... + 38

To find:

The sum of the sequence of numbers 3 + 32 + 33 + ... + 38

Solution:

We must identify that,

  • the later part of the sequence can be said to be an Arithmetic Progression (A.P)

3 + 32 + 33 + ... + 38

"Arithmetic Progression is a sequence where there is a consistent common difference between consecutive terms."

  • In this section of the sequence, we can see that the common difference is 1.

32 (+1) , 33 (+1), 34 (+1), 35 (+1), 36 (+1), 37 (+1), 38 (+1)

  • We now must find the sum of this section of sequence:

        To find the sum, use the formula for the sum of n terms

S= \frac{n}{2} [2a + (n-1)d]

d (common difference) = 1

n (number of terms in the sequence) = 7

a (first term) = 32

S= \frac{7}{2} [2(32) + (7-1)1]\\S= 4.5 [64 + 6]\\S= 4.5 (70)\\S= 315

  • Now, add 3 to the sum to complete the sequence

3 + 32 + 33 + ... + 38 = 315 +3

                                  = 318

Hence,  3 + 32 + 33 + ... + 38 is 318.

Similar questions