Math, asked by santoshgupta87876, 10 months ago

3√3x^3- 125 factorize​

Answers

Answered by mysticd
3

Answer:

\red {3\sqrt{3}x¢{3} - 125}

\green{= (\sqrt{3}x-5)(3x^{2}+5\sqrt{3}x+25)}

Step-by-step explanation:

 3\sqrt{3} x^{3} - 125 \\= \left( \sqrt{3}x\right)^{3} - 5^{3}

 = (\sqrt{3}x - 5) [(\sqrt{3})^{2} + \sqrt{3}x \times 5 + 5^{2})

 \boxed { \pink { a^{3} - b^{3} = (a-b)(a^{2}+ab+b^{2}) }}

 = (\sqrt{3}x - 5)(3x^{2}+5\sqrt{3}x+25)

Therefore.,

 \red {3\sqrt{3}x^{3} - 125}

 \green {= (\sqrt{3}x-5)(3x^{2}+5\sqrt{3}x+25)}

•••♪

Similar questions