Math, asked by pawankumar27946, 11 months ago

3/3x-5-2/4x-7=6/7(4x-7)+7/9(3x-5)​

Answers

Answered by ashishks1912
13

GIVEN :

The equation is \frac{3}{3x-5}-\frac{2}{4x-7}=\frac{6}{7(4x-7)}+\frac{7}{9(3x-5)}

TO SOLVE :

The given equation \frac{3}{3x-5}-\frac{2}{4x-7}=\frac{6}{7(4x-7)}+\frac{7}{9(3x-5)} for solving x.

SOLUTION :

Given that the equation is \frac{3}{3x-5}-\frac{2}{4x-7}=\frac{6}{7(4x-7)}+\frac{7}{9(3x-5)}

Now solving for x to find its value :

\frac{3}{3x-5}-\frac{2}{4x-7}=\frac{6}{7(4x-7)}+\frac{7}{9(3x-5)}

\frac{3}{3x-5}-\frac{2}{4x-7}-\frac{6}{7(4x-7)}-\frac{7}{9(3x-5)}=0

\frac{3}{3x-5}-\frac{7}{9(3x-5)}-\frac{2}{4x-7}-\frac{6}{7(4x-7)}=0

\frac{1}{3x-5}(3-\frac{7}{9})-\frac{1}{4x-7}(2+\frac{6}{7})=0

\frac{1}{3x-5}(\frac{27-7}{9})-\frac{1}{4x-7}(\frac{14+6}{7})=0

\frac{1}{3x-5}(\frac{20}{9})-\frac{1}{4x-7}(\frac{20}{7})=0

By taking LCM we have that,

\frac{7(4x-7)(1)(20)-20(1)(9)(3x-5)}{9(3x-5)(7)(4x-7)}=0

7(4x-7)(1)(20)-20(1)(9)(3x-5)=0

140(4x-7)-180(3x-5)=0

By using the Distributive Law :

a(x+y)=ax+ay

140(4x)+140(-7)-180(3x)-180(-5)=0

560x-980-540+900=0

By adding the like terms we get,

20x-80=0

20x=80

x=\frac{80}{20}

x=4

∴ x=4

∴ the value of x in the given equation is 4.

Answered by arslankhan99907890
0

Answer:

this is your answer...

plzzzzzzzzzzz follow me

Attachments:
Similar questions